ВЛИЯНИЕ ДОЗ И СПОСОБОВ ВНЕСЕНИЯ БОРНОГО УДОБРЕНИЯ НА ПРОДУКТИВНОСТЬ ВАЛЕРИАНЫ ЛЕКАРСТВЕННОЙ НА ДЕРНОВО-ПОДЗОЛИСТОЙ СУПЕСЧАНОЙ ПОЧВЕ

А.Г. Милоста, А.С. Бруйло, Г. М. Милоста Гродненский государственный аграрный университет, Гродно, Беларусь

ВВЕДЕНИЕ

Сохранение биологического разнообразия флоры Республики Беларусь тесно связано с решением проблем культивирования наиболее ценных лекарственных растений, природные запасы которых находятся на грани исчезновения.

Основной причиной дефицита в Республике Беларусь лекарственных препаратов растительного происхождения является слабое развитие собственной сырьевой базы. В настоящее время в республике культивируется около 20 видов лекарственных и пряно-ароматических растений, в то время как Государственный реестр содержит более 100 видов таких растений. Производимое количество сырья лекарственных растений, в частности валерианы лекарственной, не обеспечивает всех существующих потребностей. Поэтому в Беларуси и разработана долгосрочная программа развития сырьевой базы и переработки лекарственных и пряно-ароматических растений. В ней предусмотрено увеличить производство лекарственных трав. Главная цель программы - обеспечить становление и дальнейшее поступательное развитие в Республике Беларусь производства лекарственного и пряно-ароматического растительного сырья и наиболее полное насыщение внутреннего рынка доступными для населения лечебными препаратами. Решение этой задачи должно способствовать уменьшению зависимости Республики Беларусь от импорта лекарственных препаратов и субстанций для фармацевтической промышленности и пряно-ароматического сырья для предприятий иного профиля, расширению экспортного потенциала страны. Почвенноклиматические условия Беларуси благоприятны для выращивания многих лекарственных растений. Но, к сожалению, годовой объём заготовок составляет всего 216 т, или около 16% от существующей потребности [3].

Одним из таких растений является валериана лекарственная (Valeriana officinalis L.), которая в естественном состоянии в республике растет в разнообразных экологических условиях: на травяных и торфяных болотах, низинах и заболоченных лугах, по берегам рек и озер, в зарослях кустарников, по лесным полянам и опушкам. С лечебной целью препараты этого растения используют с I века н. э. Вначале их применяли в виде сухой травы и корней от удушья и в качестве мочегонного средства. В средние века — для профилактики инфекционных болезней, против эпилепсии и как средство, успокаивающее нервную систему. В настоящее время экспериментально доказано, что валериана усиливает тормозные процессы, уменьшает рефлекторную возбудимость, расслабляет спазм гладких мышц, поэтому ее применяют как успокаивающее средство, а также при бессоннице, нервном возбуждении, неврозах, эпилепсии, нервном потрясении и тяжелом переживании, при спазмах коронарных сосудов, мигрени и запорах. Иногда валериану с успехом используют для лечения заболеваний щитовидной железы. Настой корня назначают при приливах крови к голове, особенно у женщин в климактерическом периоде [4].

Условия нашей республики вполне соответствуют биологическим особенностям валерианы лекарственной. Введение валерианы лекарственной в культуру, привело к необходимости проведения комплекса исследований, направленных на изучение отношения этого растения к условиям произрастания, органическим и минеральным удобрениям. Повышение её продуктивности и качества урожая корней и корневищ является необходимым условием при возделывании валерианы. В интенсивной технологии возделывания валерианы лекарственной особую роль играют микроудобрения, потребность которой в микроэлементах повышается в связи с расширением применения концентрированных макроудобрений [1,2]. Особую роль имеет применение борных микроудобрений, которые являются важнейшим фактором роста ее урожайности и повышения качества корней и корневищ, однако действие микроэлементов во многом зависит от конкретных почвенно-климатических условий каждого региона. Кроме того, в почвах Беларуси содержится недостаточное количество подвижных форм бора.

УСЛОВИЯ И МЕТОДИКА ИССЛЕДОВАНИЙ

Полевые опыты закладывались в 2005-2007 гг. на хорошо окультуренной дерново-подзолистой супесчаной почве в условиях УО СПК «Путришки» Гродненского района.

Агрохимические показатели пахотного слоя почвы в среднем за три года: pH_{KCI} – 6,1, содержание гумуса 1,9 %, P_2O_5 – 198 и K_2O – 202 мг/кг почвы, содержание водорастворимого бора – 0,51 мг/кг.

Закладка опыта проводилась по следующей схеме:

- 1. Без удобрений;
- 2. Фон (60 т/га орг. уд. + $N_{90}P_{90}K_{120}$);
- 3. Φ oH + B_(0,025+0,025+0,025);
- 4. Φ OH + $B_{(0,05+0,05+0,05)}$;
- 5. Φ oh + $B_{(0,075+0,075+0,075)}$;
- 6. Фон + $B_{(0,5 \text{ в почву})}$;
- 7. Фон + B_(1,0 в почву);
- 8. Фон + В_(1,5 в почву);
- 9. Фон + В_{2,0 в почву).}

Борное удобрение вносилось в форме борной кислоты по вегетирующим растениям путем трехкратной некорневой подкормки и непосредственно в почву, однократно. Повторность в опытах 4-х кратная. Общая площадь делянки 35 м 2 (10,0 x3,5), учетная – 16,8 (8,0 x2,1) м 2 . Варианты размещены рендомизированным методом.

Учёт урожая проводили сплошным методом со всей делянки. В процессе роста и развития растений проводились различные наблюдения, учёты и анализы: определялась площадь листовой поверхности и масса листьев (в пересчете на единицу площади), средняя масса одного корневища и содержание в корнях и корневищах экстрактивных веществ.

В задачу наших исследований входило:

- 1. Установить зависимость урожайности и качества корней и корневищ валерианы лекарственной от применения борного микроудобрения, вносимого в различных дозах в некорневые подкормки и в почву.
- 2. Установить зависимость показателей структуры урожая валерианы лекарственной от применения борного микроудобрения.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Продуктивность валерианы лекарственной во многом зависит от применения органических и минеральных удобрений. В варианте без удобрений урожайность корней и корневищ валерианы лекарственной составила, в среднем, 7,6 ц/га. Внесение в почву 60 т/га органических удобрений и минеральных в норме $N_{90}P_{90}K_{120}$ повысило урожайность корней и корневищ валерианы лекарственной до 20,5 ц/га.

В результате исследований установлено, что борное микроудобрение оказало существенное влияние на увеличение урожайности и качества корней и корневищ валерианы лекарственной, но их действие зависело от доз и способов внесения бора на валериане лекарственной.

Внесение бора в виде некорневой подкормки способствовало увеличению урожайности корней и корневищ во всех трёх вариантах с возрастающими дозами бора. При трехкратной подкормке растений бором в норме 0,025 кг/га ($B_{(0,025+0,025+0,025)}$) был отмечен существенный рост урожайности корней и корневищ валерианы до 21,9 ц/га. При дальнейшем увеличении дозы до 0,050 кг/га ($B_{(0,05+0,05+0,05)}$) урожайность валерианы достоверно увеличилась относительно предыдущего варианта на 1,1 ц/га и составила 23,0 ц/га (табл. 1).

При дальнейшем увеличении доз бора, вносимого в виде некорневой подкормки, до максимального уровня — $B_{(0.075+0.075+0.075)}$, урожайность корней и корневищ валерианы с учетом данных HCP_{05} существенно не изменились по сравнению с предыдущим вариантом, хотя и отмечалась тенденция к росту этих показателей (в среднем на 0,5 ц/га). Как видим, величина урожайности корней и корневищ валерианы лекарственной в 3 и 4 вариантах опыта находится практически на одном уровне, что дает основанием считать, что оптимальной нормой бора при некорневой подкормке является внесение $B_{(0,05+0,05+0,05)}$ на фоне органических и минеральных удобрений (Фон — 60 т/га орг. уд. + $N_{90}P_{90}K_{120}$).

Таблица 1 Влияние борного микроудобрения на урожайность валерианы лекарственной

Nº	Варианты опыта		•	юсть корн ищ, ц/га	ней и		Листова	овая масса, ц/га	
п/ п	Барланты онына	2005 г.	2006 г.	2007 г.	сред.	2005 г.	2006 г.	2007 г.	сред.
1.	Без удобрений	7,0	8,2	6,8	7,6	7,8	9,7	7,7	8,4
2.	Фон (60 т/га орг. уд. + N ₉₀ P ₉₀ K ₁₂₀)	20,5	21,4	19,7	20,5	23,8	26,5	23,2	24,5

3.	$\Phi_{OH} + B_{(0,025+0,025+0,025)}$	22,0	23,0	20,8	21,9	26,0	29,4	25,2	26,9
4.	Фон + В _(0,05+0,05+0,05)	22,9	24,2	21,9	23,0	27,7	31,9	26,9	28,8
5.	Φ OH + B _(0,075+0,075+0,075)	23,0	24,8	22,8	23,5	28,1	32,7	28,5	29,8
6.	Фон + В _(0,5 в почву)	20,7	21,8	20,0	20,8	24,0	26,2	23,8	24,7
7.	Фон + В _(1,0 в почву)	21,2	22,3	20,5	21,3	24,8	27,2	24,6	25,5
8.	Фон + В _(1,5 в почву)	23,3	24,3	22,4	23,3	28,0	31,6	27,6	29,1
9.	Фон + В _(2,0 в почву)	23,5	24,6	22,3	23,4	28,4	32,0	27,7	29,4
	HCP ₀₅	0,8	1,0	0,9					

В опытах также изучались варианты с внесением бора в почву. При внесении бора в почву в норме 0,5 и 1,0 кг/га д.в. (варианты 6 и 7) урожайность корней и корневищ практически не изменилась, с учетом данных наименьшей существенной разницы, относительно фонового варианта. С увеличением доз бора, вносимого в почву, до 1,5 кг/га урожайность существенно уже возросла на 2,8 ц/га относительно фонового варианта и составила 23,3 ц/га. При дальнейшем увеличении доз бора, вносимого в почву, до 2,0 кг/га, получена фактически такая же урожайность корней и корневищ (23,4 ц/га), как и в 8 варианте, так как разница между этими вариантами не превышает значений наименьшей существенной разницы. Следовательно, при внесении бора в почву оптимальным следует считать вариант 8 с внесением 1,5 кг/га бора в почву на фоне органических и минеральных удобрений.

Как видим, урожайность в 4 и 8 вариантах, с учетом данных наименьшей существенной разницы, находится на одном уровне. Внесение бора в виде некорневой подкормки по вегетирующим растениям — В $_{(0.050+0.050+0.050)}$ или в почву— $B_{1,5}$ кг/га равноценно по их влиянию на урожайность (23,0-23,3 ц/га).

Для выявления зависимости продуктивности валерианы лекарственной от применяемого борного микроудобрения определялась средняя сухая масса листьев с одного растения. Этот показатель оказывает косвенное влияние на элементы продуктивности валерианы лекарственной, что обуславливает необходимость его определения при проведении исследований.

Из данных табл. 1 видно, что сбор листовой массы в варианте без удобрений составил всего 8,4 ц/га. Этот показатель заметно возрастал при внесении органических и минеральных удобрений до 24,5 ц/га. Максимальный сбор листовой массы получен при внесении бора в виде некорневой подкормки в дозе $B_{(0,05+0,05+0,05)}$ и составил 28,8 ц/га, а при почвенном внесении — $B_{(0,05+0,05+0,05)}$ и составил 29,1 ц/га.

Из литературных данных известно, что важнейшим показателем качества корневищ валерианы, выражающим количественное содержание действующих лекарственных веществ, является содержание в них экстрактивных веществ, то есть веществ, переходящих при определенных условиях в спиртовой экстракт. В соответствии с требованиями к лекарственному растительному сырью этот показатель должен быть не менее 25%.

Результаты исследований показали, что в контрольном варианте (без удобрений) содержание экстрактивных веществ составило 26,9%. На фоне органических и минеральных удобрений (60т/га навоза + $N_{90}P_{90}K_{120}$) этот показатель практически не изменился и составил 27,0%, что обеспечило выход экстрактивных веществ с единицы площади в количестве 5,54 ц/га.

Однако основной задачей наших исследований являлось установление зависимости качества корней и корневищ валерианы от применения бора. В результате исследований установлено, что борное микроудобрение оказывает существенное влияние на улучшение качества корней и корневищ валерианы лекарственной (табл.2).

Таблица 2 Влияние борного микроудобрения на содержание экстрактивных веществ в корнях и корневищах валерианы лекарственной

Nº ⊓/	Варианты опыта	Содержание экстрактивных веществ в корнях и корневищах, %					Сбор экстрактивных веществ, ц/га		
П		2005 г.	2006 г.	2007 г.	сред.	2005 г.	2006 г.	2007 г.	сред.
1.	Без удобрений	27,2	26,1	27,4	26,9	1,90	2,14	1,86	1,97
2.	Фон (60 т/га орг. уд. + N ₉₀ P ₉₀ K ₁₂₀)	27,1	26,4	27,5	27,0	5,56	5,65	5,42	5,54
3.	$\Phi_{OH} + B_{(0,025+0,025+0,025)}$	27,5	26,5	27,9	27,3	6,05	6,10	5,80	5,98
4.	Фон + В _(0,05+0,05+0,05)	28,2	27,2	28,3	27,9	6,46	6,58	6,20	6,36
5.	Фон + В _(0.075+0.075+0.075)	28,3	27,7	28,8	28,3	6,51	6,87	6,57	6,65
6.	Фон + В _(0,5 в почву)	27,2	26,6	27,7	27,2	5,63	6,00	5,54	5,72
7.	Фон + В _(1,0 в почву)	27,5	26,9	27,9	27,4	5,83	6,00	5,72	5,85

8.	Фон + В _(1,5 в почву)	28,3	27,0	28,2	27,8	6,59	6,56	6,32	6,49
9.	Фон + В _{2,0 в почву)}	28,4	27,2	28,2	27,9	6,67	6,69	6,29	6,55
	HCP ₀₅	0.5	0.6	0.6					

Внесение бора по вегетирующим растениям в виде некорневой подкормки на фоне органических и минеральных удобрений в минимальной изучаемой дозе бора — В _(0.025+0.025+0.025) не оказало существенного влияния на качество корней и корневищ валерианы лекарственной. При этом содержание экстрактивных веществ возросло всего на 0,3% относительно фонового варианта и составило 27.3%.

С увеличением этих доз бора в два раза — В $_{(0.050+0.050+0.050)}$ — уже существенно возросло содержание экстрактивных веществ до 27,9%, а их сбор — до 6,36 ц/га. При дальнейшем увеличении доз бора до уровня — В $_{(0.075+0.075+0.075)}$ — урожайность и качество корней и корневищ валерианы с учетом данных НСР $_{05}$ существенно не изменились, так как полученная прибавка была недостоверна. Поэтому оптимальной нормой внесения бора некорневым способом для получения максимального содержания экстрактивных веществ в корнях и корневищах является — В $_{(0.050+0.050+0.050)}$.

При внесении бора в почву в норме 0,5 и 1,0 кг/га д. в. получен фактически такой же уровень содержания экстрактивных веществ (27,2-27,4%), как и в фоновом варианте. Увеличение дозы бора до 1,5 кг/га способствовало существенному росту содержания экстрактивных веществ до 27,8%. Дальнейшее увеличение доз бора до 2,0 кг/га не оказало заметного влияния на качество корней и корневищ валерианы.

Таким образом, внесение бора в виде некорневой подкормки по вегетирующим растениям валерианы в норме — В $_{(0.050+0.050+0.050+0.050)}$ или в почву — В $_{1,5}$ кг/га равноценно по их влиянию на урожайность (23,0-23,3 ц/га) и содержание экстрактивных веществ (27,8-27,9%) в корнях и корневищах (варианты 3 и 8). Соответственно, в этих вариантах получен и максимальный сбор экстрактивных веществ с единицы площади (6,36-6,49 ц/га). Хотя в варианте 5 сбор экстрактивных веществ (6,65 ц/га) более высокий, чем в предыдущем варианте 4 (6,36 ц/га), но это увеличение связано с недостоверной прибавкой содержания экстрактивных веществ и урожайности в 5 и 4 вариантах.

Для определения зависимости продуктивности валерианы лекарственной от борного микроудобрения определялась площадь листовой поверхности и соотношение листовой массы к массе корней и корневищ. Эти показатели оказывают определенное влияние на элементы продуктивности валерианы лекарственной, что и обуславливает необходимость их определения при проведении исследований (табл. 3).

Таблица 3
Влияние борного микроудобрения на площадь листовой поверхности валерианы и соотношение листовой массы к массе корневищ

N º ⊓/	Варианты опыта	Пл	ющадь лі	истьев, ть	ıс. м²/га	Соотношение листово массы к массе корней			
П	·	2005 г.	2006 г.	2007 г.	сред.	2005 г.	2006 г.	2007 г.	сред.
1.	Без удобрений	20,5	25,1	22.1	25.6	1,11	1,18	1,13	1,14
2.	Фон (60 т/га орг. уд. + N ₉₀ P ₉₀ K ₁₂₀)	35,5	40,9	38,0	38,1	1,16	1,24	1,18	1,19
3.	$\Phi_{OH} + B_{(0,025+0,025+0,025)}$	37,9	45,1	40,2	41,1	1,18	1,28	1,21	1,22
4.	Фон + В _(0,05+0,05+0,05)	40,3	47,7	45,1	44,4	1,21	1,32	1,23	1,25
5.	Фон + В _(0,075+0,075+0,075)	40,8	49,3	45,5	45,2	1,22	1,32	1,25	1,26
6.	Фон + В _(0,5 в почву)	36,0	41,1	36,9	38,0	1,16	1,20	1,19	1,18
7.	Фон + В _(1,0 в почву)	37,5	43,3	40,0	40,3	1,17	1,22	1,20	1,20
8.	Фон + В _(1,5 в почву)	41,1	50,1	44,3	45,2	1,20	1,30	1,23	1,24
9.	Фон + В _{2,0 в почву)}	41,4	50,0	44,5	45,3	1,21	1,30	1,24	1,25

Из данных табл. 3 видно, что площадь листьев в варианте без удобрений составила 25,6 тыс. m^2 /га. Этот показатель заметно возрастал при внесении органических и минеральных удобрений до 38,1 тыс. m^2 /га. Максимальная площадь листовой поверхности — 44,4-45,2 тыс. m^2 /га получена при внесении бора некорневым способом в дозе $B_{(0.05+0.05+0.05)}$.

В опытах рассчитывалось соотношение листовой массы к массе корней. Из полученных данных следует, что с увеличением доз бора, вносимого как некорневым способом, так и в почву, возрастает доля листовой массы в структуре урожая. Полученные данные показывают, что с увеличением доз бора листовая масса и ее площадь растут более высокими темпами, чем масса корневищ и корней, но при достижении оптимальных доз бора (варианты 4 и 8) увеличение доли листовой массы и ее площади замедляется. Под влиянием бора заметно возрастает средняя масса одного корневища и доля листовой массы в структуре урожая.

В производственных условиях экономическая эффективность способа внесения бора будет зависеть от конкретных производственных ситуаций. При возможности совмещения некорневой подкормки бором с обработкой валерианы лекарственной против болезней, вредителей или сорной растительности этому способу следует отдать предпочтение. В случае внесения бора в форме комплексных удобрений почвенное внесение будет иметь экономическое преимущество.

выводы

Для получения максимальной урожайности корней и корневищ валерианы лекарственной рекомендуется внесение бора в виде некорневой подкормки по вегетирующим растениям валерианы лекарственной в норме — В $_{(0.050+0.050+0.050+0.050)}$ или в почву— $B_{1,5}$ кг/га на фоне органических (60 т/га) и минеральных удобрений ($N_{90}P_{90}K_{120}$). Внесение бора в виде некорневой подкормки по вегетирующим растениям — В $_{(0.050+0.050+0.050)}$ или в почву— $B_{1,5}$ кг/га равноценно по их влиянию на урожайность (27,7 и 28,0 ц/га) и содержание экстрактивных веществ (27,9 и 27,8%) в корнях и корневищах. Соответственно, в этих вариантах получен и максимальный сбор экстрактивных веществ с единицы площади (6,36 и 6,49 ц/га).

ЛИТЕРАТУРА

- 1. Анспок, П.И. Микроудобрения / П.И. Анспок. Л.: Агропромиздат, 1990. 272 с.
- 2. Аутко, А.А. Эффективность применения минеральных и органических удобрений при возделывании пряно-ароматических и лекарственных растений / А.А. Аутко, О.В. Позняк // Почвоведение и агрохимия. 2005. № 1. С. 157-161.
- 3. Кухарева, Л.В. Современное состояние и перспективы развития сырьевой базы и переработки лекарственных и пряно-ароматических растений в Беларуси / Кухарева Л.В., Путырский И.Н. // Наука производству: материалы науч.-практ. конф. Гродно, 2000. С. 128-129
- 4. Асаблівасці мінеральнага абмену лекавых культур ва ўмовах Беларусі. Валяр'ян лекавы / Ж.А Рупасава [и др.] // Весці Нац. акад. навук Беларусі. 1994. №3. С. 6-11.

INFLUENCE OF DOZES AND APPLICATION METHODS OF BORIC FERTILISER ON THE PRODUCTIVITY OF VALERIANA OFFICINALIS ON THE SOD-PODZOLIC SANDY SOIL

A.G. Milosta, A.S. Bruil, G.M. Milosta

Summary

For the maximal productivity and quality of valerian at the sod-podzolic sandy soils at the maintenance of mobile forms of the boron no more than 0,5 mg/kg it is normally recommended to apply B $_{(0.050+0.050+0.050)}$ or into the soil - B_{1,5} kg/ha on the background of organic fertilizers (60 t/ha) and mineral fertilizers (N₉₀P₉₀K₁₂₀) to valerian medicinal plants during vegetation. Appling the boron to the plants during vegetation B $_{(0.050+0.050+0.050)}$ or to the soil– B_{1,5} kg/ha is of equal value in regard to the yields (23,0-23,3 c/ha) and extractive substances contents (27,8-27,9%) in the roots and rhizomes. The maximal yield of the extractive substances from unit of the area (6,36-6,49 c/ha) is obtained in these variants accordingly.

Поступила 31 марта 2009 г.