ИСПОЛЬЗОВАНИЕ ФОНОВ АЗОТНОГО ПИТАНИЯ В СЕЛЕКЦИИ ОЗИМОЙ РЖИ

О.С. Радовня, В.А. Радовня, В.Л. Копылович

Полесский институт растениеводства, Гомельская обл.. п. Криничный. Беларусь

Отношение растений к условиям минерального питания (в первую очередь азотного), в настоящее время рассматривается наравне с другими конституционными свойствами растений (по Синской – отношение к интенсивности света и длине дня, холодостойкость, отношение к влаге)[1].

Изучение реакции растений на удобрения всегда являлось главным элементом сортовой агротехники. Однако, если ранее лишь констатировалась способность сорта эффективно использовать средства интенсификации и дополнительные дозы минеральных удобрений, то сейчас активно освачвается новое направление селекции по созданию агрохимически эффективных сортов (АЭС).

На процессы питания растений и эффективность использования ими минеральных удобрений оказывает значение огромное число факторов: габитус растений и развитие корневой системы, устойчивость к полеганию, толерантность к биотическим и абиотическим стрессовым факторам, активность различных физиологических процессов (благоприятная динамика поглощения, оптимальное содержание физиологически активных метаболитов и др.). Поэтому модели таких сортов наряду с признаками, широко используемыми в традиционной селекции, предусматривают показатели, коррелирующие с активным поглощением и рациональным расходом элементов питания.

Вопрос о целесообразности включения новых признаков в селекционный процесс является дискуссионным. Ранее считалось, что полученные при сортоиспытании и в селекционных питомниках данные по урожайности зерна и его качеству достаточно информационные, чтобы судить об эффективности использования минеральных удобрений. Для дополнительного изучения реакции сортов к уровню минерального питания (т.е. агрохимической эффективности) и проводились производственные сортоиспытания на различных агрофонах, что, однако, значительно увеличивает объемы работ и площадь под опытом.

В линейной селекции большинства растений-самоопылителей такая дополнительная оценка может быть применена на заключительных этапах селекции (контрольный питомник или конкурсное сортоиспытание), когда уже имеется достаточный запас семян и нет опасности переопыления генотипов. Малоценные сортообразцы в таком случае исключаются из селекционного процесса, семена от выделившихся образцов используются для дальнейшего испытания.

В селекции перекрестников все сортообразцы должны размножаться отдельно на изолированных участках и параллельно оцениваться в сортоиспытании (метод «половинок»). Поэтому количество размножаемых их сортообразцов невелико, а от исходного «генетического качества» сформированных популяций зависит результативность селекционного процесса.

Таким образом, если в селекции самоопылителей ставится целью отобрать и затем размножить лучший генотип, то в селекции перекрестноопыляющихся культур важно повысить генотипическую ценность популяции, для чего ее формируют из десятков и сотен генотипов. При включении в популяцию малоценных образцов качество популяции ввиду перекрестного переопыления со временем снижается

Очевидно, что в селекции растений-перекрестников уже при отборе элитных растений для включения в популяции следует проводить их оценку по агрохимической эффективности, что, однако, затруднено большим количеством образцов, малой их массой, небольшим сроком между отбором, оценкой и посевом.

Наиболее простым критерием, характеризующим эффективность потребления азота и его метаболизм в растении, является накопление его в зерне. Показано, что белковость зерна — результат высокого содержания азота в растении, приходящегося на единицу веса зрелого зерна, независимо от того, под действием каких факторов изменяется содержание белка в зерне — условий выращивания или генотипических особенностей [2].

В селекционной практике с целью значительного сокращения объема лабораторных и аналитических работ и повышения результативности отборов применяются провокационные фоны, в которых изучаемый признак достигает максимального проявления, а его дисперсия увеличивается. В селекции озимой ржи широко используется метод «перестоя на корню» как фон для изучения устойчивости зерна к прорастанию [3]. В то же время резонно ожидать, что создание фонов азотного питания также окажет существенное влияние на варьирование признака содержания белка [азота] в зерне.

Некорневая «качественная» азотная подкормка широко используется в практике для повышения содержания белка [азота] в зерне. Однако в селекционной практике озимой ржи такой фон отбора до сих пор не использовался. В то же время он может быть достаточно перспективным для отбора форм, высокоотзывчивых на позднюю азотную подкормку, другими словами обладающих высокой аттраги-

рующей способностью. Некорневой способ внесения отличается наибольшей равномерностью, создает для растений одинаковые условия развития и позволяет более объективно их оценить.

В своих исследованиях мы предположили, что одним из критериев агрохимической эффективности генотипов озимой ржи в дополнение к основным элементам продуктивности может служить признак содержания фракции спирторастворимых белков в зерне (на сухое вещество, на 1 колос и на 1 зерновку). Известно, что именно проламины являются основной фракцией запасного белка зерновых и главным образом за счет этих белков происходит увеличение содержания белка в зерне при внесении азота.

Использование в наших исследованиях сорта, т.е. популяции с уже константными признаками, позволило ожидать равное варьирование признаков по выборке. Широкие границы варьирования морфологических признаков можно в таком случае отнести только за счет влияния средовых факторов (пестрота почвенного плодородия, различия в густоте стояния растений и др.). Высокая же обеспеченность зерна азотом при высоких показателях признаков продуктивности растения служит критерием агрохимической эффективности генотипа.

Цель опыта – определить оптимальный фон азотного питания, обеспечивающий минимальное влияние средовых факторов на варьирование хозяйственно-ценных признаков; изучить сцепленность данных признаков с содержанием в зерне спирторастворимых белков.

МЕТОДИКА И ОБЪЕКТЫ ИССЛЕДОВАНИЯ

Исследования проводились в РНДУП «Полесский институт растениеводства» в 2008-2009 гг. Объектом являлся сорт диплоидной озимой ржи Бирюза. Почва опытного участка — дерновоподзолистая рыхлосупесчаная. Содержание элементов питания: P_2O_5 — 260-286 мг/кг, K_2O — 227-240 мг/кг, гумуса 1,8-2,0%, рН 6,1-6,3. Возделывание озимой ржи велось по рекомендуемым технологиям, посев проводился в начале третьей декады сентября рядовым способом с нормой высева семян 4,5 млн.шт./га. До посева вносились фосфорно-калийные удобрения из расчета $P_{60}K_{90}$. Весной при возобновлении вегетации производилась азотная подкормка (мочевина) по вариантам опыта табл. 1. В третьем варианте в стадии ДК 29-31 проводилась вторая азотная корневая подкормка (мочевина). Все варианты опыта дополнялись некорневой подкормкой азотом (12% раствор мочевины из расчета N_{15} фазе полного колошения).

Отбор элитных растений осуществлялся непосредственно незадолго перед уборкой (20.07). В каждом варианте отбиралось по 1 колосу от 30 элитных растений. Критерием отбора являлись высота растений, крупность и форма колоса, свойственные сорту. Объем выборки составил менее 1% от числа растений. Лабораторная оценка включала определение веса образца, количества зерен, массы 1000 зерен, натуры, формы и цвета зерна по стандартным методикам. Определение содержания белков, растворимых в 70% этиловом спирте, проводилось по методу Лоури с калибровкой по альбумину [4]. Для статистического расчета применялся пакет анализа программы Exel.

Погодные условия за годы исследований несколько отличались от нормы, но в целом были благоприятными для перезимовки и формирования урожая. В начале вегетации 2008 г. сумма осадков за апрель вдвое превысила норму. В дальнейшем температура воздуха находилась на уровне средних показателей. Характер выпадения осадков отличался периодичностью. Если в мае количество выпавших осадков соответствовало норме, то в июне наблюдался 50%-ный дефицит влаги. В июле было зафиксировано 126,6 мм осадков, или 127,3% от нормы.

В начале вегетации 2009 года ощущался дефицит влаги (сумма осадков за апрель была в 7 раз меньше нормы). В дальнейшем отмечалось достаточное выпадение осадков в пределах и выше нормы, температуры воздуха находились на уровне средних показателей за исключением III декады июня и II декады июля, превысивших норму на 2,6-2,9°C.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Вес зерен с 1 колоса является одним из важнейших селекционных признаков, определяющих продуктивность растений. В связи с этим отборы элитных растений всегда проводятся по оценке кустистости и крупности колоса.

За годы исследований по всем вариантам опыта этот показатель в среднем составил 2,5-4,1 г (табл. 1). Проведение корневых и некорневых азотных подкормок оказало наибольшее влияние в 2008 г., однако и вариация признаков была наибольшей в том же году.

Во втором варианте (фон + N_{60}) за все два годы наблюдений наблюдался наибольший вес зерен с 1 колоса. Увеличение уровня азотного питания еще на 30 кг/га д.в. (вар. 3) несколько снизило этот по-казатель (особенно в 2008 г.), что можно объяснить повышением продуктивной кустистости и увеличением числа колосьев.

Проведение дополнительной некорневой подкормки (N₁₅) в 2008 г. на 35-49% увеличило вес зерен с 1 колоса, тогда как в следующем 2009 отмечалась лишь небольшая тенденция. Варьирование признака веса зерен с 1 колоса за годы исследований на всех фонах азотного питания было значительным. Проведение дополнительной некорневой подкормки не привело к существенному его изменению при отборах.

Таблица 1

		_	Некорневая	Фон (P ₆₀ K ₉₀)		Фон + N ₆₀			Фон + N _{60 + 30}			
Показ	атель	Год	подкормка	среднее	min-max	V, %	среднее	min-max	V, %	среднее	min-max	V,%
Вес зерен с 1 колоса, г		2008	контроль	2,5	1,7-3,0	22,6	4,3	1,4-8,4	42,8	3,0	1,6-5,8	38,2
			+N ₁₅	3,7	2,0-6,4	35,1	-	-	-	4,1	1,5-7,1	41,5
		2009	контроль	2,5	1,2-3,2	21,6	2,8	2,0-3,5	17,7	2,5	2,1-3,0	11,4
		2003	+N ₁₅	2,5	1,6-3,5	20,1	2,9	2,0-4,0	20,2	2,6	2,1-3,0	12,2
Количество зерен с 1 колоса, шт.		2008	контроль	80,0	53,0-104,0	26,7	129,4	64,0-220,0	35,0	91,9	41,0-164,0	39,1
			+N ₁₅	125,7	42,0-220,0	38,8		-	-	124,7	52,0-234,0	46,1
		2009	контроль	57,8	34,0-74,0	17,6	60,9	44,0-76,0	14,6	57,5	45,0-72,0	14,6
	,	2009	+N ₁₅	56,6	33,0-79,0	18,4	60,0	45,0-74,0	14,0	59,1	49,0-73,0	10,3
		2008	контроль	31,6	24,0-36,6	14,2	33,1	21,2-48,0	22,4	33,4	25,7-39,7	14,7
Macca	1000	2006	+N ₁₅	32,8	20,4-48,0	24,0				34,4	15,0-43,5	23,9
зерен, г		2009	контроль	43,3	20,7-55,9	19,4	45,6	36,2-54,5	11,0	43,7	31,9-54,0	12,1
			+N ₁₅	46,7	38,5-60,0	11,2	47,8	37,8-62,5	13,0	44,0	31,5-51,0	13,6
	% на абс. сух. в.	2008	контроль	7,3	5,5-8,6	7,3	8,3	6,6-11,5	16,2	7,4	6,5-9,5	12,9
			+N ₁₅	8,7	6,6-11,5	8,7	-	-	-	9,6	6,5-13,4	23,1
Содер		2009	контроль	3,3	2,3-4,7	24,6	2,5	2,0-4,3	25,0	3,2	2,3-4,1	13,6
дер-			+N ₁₅	3,7	2,6-4,6	15,6	3,5	2,3-4,6	22,3	4,8	3,8-6,1	15,2
жание спир- торас- тво- римо-	мг на 1 ко- лос	2008	контроль	223,7	114,7-309,6	33,4	472,4	166,7-1111	50,3	265,8	157,5-475,8	36,4
			+N ₁₅	443,7	91,3-1111	52,2	-	-	-	484,3	218,3-1165	59,1
		2009	контроль	91,0	54,4-118	25,3	70,5	42,3-107	27,7	80,1	47,6-103	19,0
			+N ₁₅	92,3	57,8-124	22,6	97,9	52,2-184	28,7	131	82,6-172	20,7
ГО	мг на 1 зер новку	2008	контроль	2,9	1,7-3,8	30,8	3,6	2,3-5,2	25,2	3,0	2,2-4,5	21,7
белка			+N ₁₅	3,5	2,2-5,3	28,4	-		-	4,0	1,6-6,7	34,5
		-	контроль	1,5	0,8-2,1	31,5	1,2	0,8-1,9	27,8	1,5	1,3-1,7	10,6
			+N ₁₅	1,7	1,1-2,2	19,0	1,7	0,8-2,9	29,2	2,2	1,3-3,0	22,6

Аналогичным образом по мере увеличения доз азотных удобрений изменялось количество зерен с 1 колоса. Однако, если в 2009 г. количество зерен в колосе и вариация признака практически не зависели от фона азотного питания, то в 2008 г. при проведении корневых подкормок в дозе N_{60-90} количество зерен возросло на 14-60%, а коэффициент вариации увеличился на 8,3-12,4%. Некорневая подкормка азотом в 2008 г. увеличила вариацию признака на 7,0-12,1%, в 2009 на фоне N_0 не изменилась, а при корневой подкормке N_{60+30} уменьшилась на 4,3%.

За два года исследований внесение азотных удобрений в дозе N_{60} увеличили массу 1000 зерен на 5%. При проведении второй азотной подкормки масса 1000 зерен существенно не отличалась от варианта 1, но вариация признака в 2009 г. снизилась в 1,6 раза.

При проведении некорневой подкормки на уровнях азотного питания N_0 и N_{60+30} отмечалась лишь тенденция к увеличению массы 1000 зерен, но при этом в 2008 г вариация признака увеличилась практически в два раза.

Содержание спирторастворимых белков (в абсолютно сухом веществе) в отобранных образцах мало зависело от фонов азотного питания. В то же время проведение некорневой азотной подкормки способствовало существенному увеличению их содержания. Если в первом варианте оно возросло на 0.4-1.4%, то в третьем варианте с внесением N_{60+30} – на 1.6-2.2%.

Если рассматривать показатель содержания белка в 1 зерновке, то некорневая подкормка в наиболее благоприятном 3 варианте обеспечила не только наибольший прирост накопления белка, но и во все годы значительно увеличила вариацию признака. Такое увеличение вариации говорит о наличии в популяции генотипов, способных в различной степени накапливать спирторастворимый белок в зерновке.

В наших исследованиях также отмечено влияние фонов азотного питания на частоту встречае-мости качественных признаков зерна (табл. 2). Например, на фоне N_{60+30} увеличилась встречаемость зерен с коричневой окраской зерна, в 2009 г. прослеживалась тенденция формирования морщинистого зерна в варианте с максимальным уровнем азотного питания.

Не менее существенными были изменения, связанные с дополнительной некорневой азотной подкормкой. На всех фонах азотного питания она способствовала увеличению встречаемости образцов с коричневой окраской зерна, но сохраняет встречаемость зеленозерных образцов на прежнем уровне. При этом на фоне N_{60+30} значительно увеличилась встречаемость образцов с бочковидной формой зерновки и снизилась встречаемость морщинистых зерновок.

 Таблица 2

 Встречаемость фенотипов, различающихся по качественным признакам

Фенотип	Год	Некорневая подкормка	Фон – N ₀ P ₆₀ K ₉₀	Фон + N ₆₀	Фон + N ₆₀₊₃₀
	2000	контроль	0,40	0,74	0,70
C reality to be a control of the control	2008	+N ₁₅	0,70	-	0,80
С коричневой окраской зерна	2009	контроль	0,25	0,31	0,50
		+N ₁₅	0,44	0,50	0,73
	2008	контроль	0,27	0,20	0,20
С запацей окраской запис		+N ₁₅	0,20	-	0,10
С зеленой окраской зерна	2009	контроль	0,31	0,13	0,06
	2009	+N ₁₅	0,31	0,13	0,10
	2008	контроль	0,07	0,00	0,10
С бочковидной формой зер-	2006	+N ₁₅	0,20	-	0,20
новки	2009	контроль	0,13	0,13	0,06
	2009	+N ₁₅	0,13	0,19	0,20
C MODULANIA CODUCE*	2000	контроль	0,00	0,06	0,13
С морщинистым зерном*	2009	+N ₁₅	0,06	0,00	0,00

^{*-} в 2008 г. у образцы с морщинистым зерном не встречались

Для изучения меры сопряженности изучаемых признаков и возможности одновременного отбора в направлениях высокой продуктивности и содержания спирторастворимого белка нами рассчитаны коэффициенты корреляции на двух крайних фонах азотного питания: N₀ и N₆₀₊₃₀ (табл. 3-4).

Анализ таблиц показывает, что по мере увеличения уровня азотного питания ослабевает теснота связей между рассматриваемыми признаками. Например, если на фоне N₀ содержание спирторастворимого белка в сухом веществе за годы исследований средне коррелировало с массой 1000 зе-

рен, количеством зерен с 1 колоса, коричневой окраской зерна, то на фоне N_{60+30} эти связи слабые и незначительные, т.е. азотные удобрения способны нивелировать различия между образцами по признакам продуктивности.

Таблица 3 Влияние азотной некорневой подкормки на корреляции хозяйственно ценных признаков с показателями содержания в зерне спирторастворимого белка на фоне азотного питания №(г)

Признак		Содержание белка в абс. сух. в-ве, %		Содержание белка в 1 зерновке, мг		Содержание белка в 1 колосе, мг			
,	контроль	+N ₁₅	контроль	+N ₁₅	контроль	+N ₁₅			
2008 г.									
Масса 1000 зерен	0,59	0,38	0,72	0,67	0,45	0,46			
Натура зерна	0,40	0,77	0,79	0,77	0,04	0,78			
Бочковидная форма зерна	0,44	0,61	0,34	0,72	0,13	0,53			
Коричневая окраска зерна	0,44	0,67	0,37	0,50	0,39	0,54			
Вес зерна с 1 колоса	0,07	0,46	0,23	0,41	0,87	0,97			
Количество зерен с 1 колоса	-0,14	-0,13	-0,33	-0,72	0,43	0,14			
	•	2009 г.							
Масса 1000 зерен	0,48	0,02	0,73	0,58	0,85	0,43			
Натура зерна	0,10	-0,09	0,00	-0,02	0,00	-0,06			
Бочковидная форма зерна	0,10	-0,09	0,00	-0,02	0,00	-0,06			
Коричневая окраска зерна	0,50	0,04	0,57	0,12	0,26	0,14			
Вес зерна с 1 колоса	-0,07	-0,02	-0,11	0,34	0,23	0,66			
Количество зерен с 1 колоса	-0,48	-0,07	-0,78	-0,15	-0,50	0,38			

Таблица 4 Влияние азотной некорневой подкормки на корреляции хозяйственно ценных признаков с по-казателями содержания в зерне спирторастворимого белка на фоне азотного питания N₆₀₊₃₀ (r)

Признак	Содержание белка в абс. сух. в-ве , %		Содержание белка в 1 зерновке, мг		Содержание белка в 1 колосе, мг				
	контроль	+N ₁₅	контроль	+N ₁₅	контроль	+N ₁₅			
2008 год									
Масса 1000 зерен	0,02	0,07	0,75	0,71	-0,13	0,28			
Натура зерна	-0,19	0,15	-0,14	0,39	0,41	-0,02			
Бочковидная форма зерна	0,04	0,02	0,23	0,16	-0,19	0,10			
Коричневая окраска зерна	-0,33	0,17	-0,06	0,20	-0,26	0,34			
Вес зерна с 1 колоса	0,51	0,17	0,38	0,37	0,87	0,79			
Количество зерен с 1 колоса	-0,21	0,13	-0,60	-0,27	0,74	0,42			
2009 год									
Масса 1000 зерен	0,09	0,34	0,79	0,77	0,20	0,72			
Натура зерна	0,04	-0,09	-0,13	-0,02	-0,10	-0,06			
Бочковидная форма зерна	0,04	-0,09	-0,13	-0,02	-0,10	-0,06			
Коричневая окраска зерна	0,11	0,22	0,16	0,12	0,13	0,27			
Вес зерна с 1 колоса	0,24	0,07	0,60	0,45	0,71	0,71			
Количество зерен с 1 колоса	0,10	-0,41	-0,48	-0,47	0,26	-0,06			

При этом при N_{60+30} , в отличие от безазотного фона, вес зерна с 1 колоса средне коррелирует с содержанием белка, т.е. часть многовесных образцов отличается высоким содержанием белка. Именно такие формы должны отбираться в селекции новых сортов. Как отмечает А.Н. Павлов [2], при высокой обеспеченности растений азотом, но малом числе сформированных зерен в них накапливается повышенное содержание азота. В связи с этим существует опасность отбора малопродуктивных образцов, отличающихся высоким содержанием белка в сухом веществе. В связи с этим считаем, что в селекции на качество отборы следует проводить при равной плотности посевов и кустистости растений.

Показатели содержания белка в 1 колосе, и особенно в 1 зерновке, являются расчетными и учитывают в себе как содержание белка, так и важнейшие элементы индивидуальной продуктивности растений. Заметно, что корреляции данных признаков на рассматриваемых фонах азотного питания различаются в меньшей степени.

Проведение некорневых подкормок несколько изменяет сопряженность рассматриваемых признаков. Так, на фоне N_0 практически все они ослабевают. При N_{60+30} некорневая подкормка увеличивает связь показателей содержания белка с массой 1000 зерен и с количеством зерен с 1 колоса. Отсюда следует, что является перспективным проведение селекционных отборов на фоне некорневой подкормки в направление высокоозерненных колосьев с высоким содержанием белка в зерне, что будет характеризовать способность образца к активному усвоению азота. При отборе по фенотипу в улучшающем семеноводстве высоко результативным будет отбор по массе 1000 зерен: максимальной массой будут обладать образцы с высоким содержанием белка (т.е. с высокой аттрагирующей способностью).

выводы

- 1. Проведение отборов на высоком фоне азотного питания (N_{60+30}) позволяет существенно снизить влияние средовых факторов на вариацию признаков продуктивности и с этим повысить результативность отборов. Проведение некорневой азотной подкормки (N_{15}) не оказывает существенного влияния на такие показатели продуктивности растений, как вес зерна с 1 колоса, количество зерен с 1 колоса, но несколько повышает массу 1000 зерен.
- 2. Результаты исследований подтвердили широкое варьирование показателя содержания спирторастворимых белков и возможность его использования в селекционной работе. Содержание данной фракции белка в элитных колосьях озимой ржи мало зависит от применяемого фона азотного удобрения, однако наибольшая вариация признака встречается при недостаточном его внесении. Некорневая подкормка на фоне N_0 снижает вариацию этого признака до того же уровня, как и на фоне $N_{60+30.}$
- 3. Повышенное азотное питание значительно увеличивает встречаемость зерен с коричневой окраской зерна. Дополнительная некорневая азотная подкормка способствует увеличению встречаемости образцов с коричневой окраской зерна и с бочковидной формой зерновки.
- 4. Сопряженность хозяйственно-ценных признаков озимой ржи существенно зависит от фона азотного питания. Применение фона N_{60+30} и некорневой подкормки позволяет повысить сопряженность признаков массы 1000 зерен и количества зерен в 1 колосе с содержанием спирторастворимых белков и тем самым повысить результативность отборов на высокую аттрагирующую способность.

ЛИТЕРАТУРА

- 1. Папонов, А.Н. Азот как фактор отбора в естественных и искусственных фитоценозах / А.Н. Папонов. М.: Наука, 1978. С. 170-173.
- 2. Павлов, А.Н. Повышение содержания белка в зерне / А.Н. Павлов. М.: Наука, 1984. 114с.-С. 170-173.
- 3. Урбан, Э.П. Создание провокационных фонов в селекции озимой ржи на устойчивость к прорастанию / Э.П. Урбан, О.С. Радовня, В.А. Радовня // Сб.науч. тр. Мн., 2009. Вып. 45: Земледелие и селекция в Беларуси. С. 151-161.
- 4. Методы биохимического исследования растений / А.И. Ермаков [и др.]; под ред. А.И. Ермакова. Л.: Агропромиздат, 1987. 430 с.

USE A NITRIC NUTRITION BACKGROUNDS IN WINTER RYE SELECTION

O.S. Radovnya, V.A. Radovnya, V.L. Kapylovich

Summary

In article the results of works on estimation of nitric nutrition backgrounds in selection of winter rye on grain quality and agrochemical efficiency are presented. The backgrounds N_0 , N_{60} and N_{60+30} which were supplemented with not root top dressing in a phase of ear formation (N_{15}) were modelled. The best variation of signs of grain efficiency and the content of alcohol-soluble protein were observed in variant N_{60+30} .

Поступила 21 марта 2010 г.