2. ПЛОДОРОДИЕ ПОЧВ И ПРИМЕНЕНИЕ УДОБРЕНИЙ

УДК 631.8:631.582:631.445

ПРОДУКТИВНОСТЬ ЗЕРНОТРАВЯНОГО СЕВООБОРОТА И ПЛОДОРОДИЕ ДЕРНОВО-ПОДЗОЛИСТОЙ СУПЕСЧАНОЙ ПОЧВЫ ПРИ ПРИМЕНЕНИИ РАЗЛИЧНЫХ СИСТЕМ УДОБРЕНИЯ

В.В. Лапа, Н.Н. Ивахненко, М.М. Ломонос, А.А. Грачева, А.В. Бачище Институт почвоведения и агрохимии, г. Минск, Беларусь

ВВЕДЕНИЕ

Опыт ведущих зарубежных стран, а также высокоинтенсивных хозяйств республики показывают, что основой устойчивого развития аграрной отрасли, повышения ее продуктивности является плодородие почв. Кроме того, именно уровень плодородия почв, наряду с адаптивными возможностями растений относится к важнейшим факторам защиты сельскохозяйственных культур от неблагоприятных погодных условий. Агрохимический статус почв в наибольшей степени зависит от объемов и технологий применения органических и минеральных удобрений. В настоящее время агрохимической наукой республики разработаны основные концептуальные положения, касающиеся поддержания и повышения почвенного плодородия и ресурсосберегающая система удобрения сельскохозяйственных культур, основанная на дифференцированном возврате элементов питания в зависимости от содержания их в почвах и уровня планируемых урожаев [1-5]. На основании этих разработок решены вопросы оптимальных доз и сроков внесения удобрений под отдельные сельскохозяйственные культуры, которые реализованы в практической деятельности хозяйств. В дальнейшем развитии нуждаются вопросы обоснования уровней применения удобрений в севооборотах, которые являются основой планирования потребности республики в минеральных удобрениях на длительную перспективу. Кроме того, в настоящее время в республике имеется ряд экономически стабильных хозяйств, потенциал которых позволяет работать на уровне продуктивности 60 ц к.ед. с га и выше. Такие хозяйства и районы в перспективе должны стать основными производителями сельскохозяйственной продукции в республике. Как правило, в этих хозяйствах сформирован высокий уровень почвенного плодородия, имеется современная сельскохозяйственная техника. Однако для работы на высокие уровни урожайности обычные технологии использования удобрений не подходят. Получение урожайности зерновых культур, например, 80 и выше ц/га требует совершенно новых подходов в применении средств химизации, в которых не должно быть ни единого макро- или микроэлемента в минимуме. Обязательное дополнительное требование – сочетание удобрений со всем комплексом химической защиты растений. Экспериментальной основой для научного решения данных вопросов могут быть только длительные агрохимические стационарные полевые опыты с чередованием культур в пространстве и времени, т.е. максимально приближенные к реальной модели применяемой системы земледелия в республике. Нуждаются в постоянном уточнении также и дозы минеральных удобрений для новых и перспективных сортов сельскохозяйственных культур с более высоким потенциалом урожайности, которые, как правило, являются и более требовательными к условиям минерального питания [6].

Одним из важнейших факторов, определяющих уровень жизни населения, является качество потребляемых продуктов питания, и, в первую очередь, сбалансированность их по элементному составу. Поэтому все исследования по разработке агрохимической модели формирования высокой урожайности сельскохозяйственных культур сопровождались изучением качественного состава получаемой продукции.

Цель исследований – разработать агрохимическую модель формирования высокой урожайности сельскохозяйственных культур, обеспечивающую рациональное использование почвенных запасов элементов питания, окупаемость 1 кг NPK 10-15 к.ед., получение растениеводческой продукции, сбалансированной по основным макро- и микроэлементам в соответствии с нормативными требованиями.

МЕТОДИКА ИССЛЕДОВАНИЙ

Исследования проводили в 2004-2010 гг. в стационарном полевом опыте в севообороте: горохо-овсяная смесь — ячмень Гонар — озимая рожь Зарніца с подсевом клевера — клевер луговой Устойлівы — озимое тритикале Вольтарио на дерново-подзолистой супесчаной, подстилаемой с глубины 0,3-0,5 м песком, почве. Стационар расположен в РУП «Экспериментальная база им. Суворова» в Узденском районе Минской области.

В схеме опыта предусматривали внесение трех доз азота на фоне фосфорных и калийных удобрений с различной интенсивностью балансов: положительные (150% компенсации выноса P_2O_5 и K_2O), поддерживающие (100%) и дефицитные (50% компенсации выноса P_2O_5 и K_2O). Планируемый урожай зерна ячменя, озимых ржи и тритикале 40-50 ц/га. Органические удобрения вносили фоном в дозе 40 т/га под горохо-овсяную смесь.

Опыт развернут в пространстве в трех полях. Агрохимическая характеристика пахотного слоя перед началом ротации севооборота: pH $_{\rm KCI}$ – 5,7-5,9, гидролитическая кислотность – 1,58-1,92, сумма обменных оснований – 9,1-9,52 смоль(+)/кг почвы, обменные кальций 4,4-4,8 и магний 1,3-1,6 смоль(+)/кг почвы, содержание подвижных форм (по Кирсанову): ${\rm P_2O_5}$ – 170-280, ${\rm K_2O}$ – 110-275 мг/кг почвы, гумуса – 2,6-3,0%.

Предпосевную обработку почвы и уход за растениями осуществляли в соответствии с отраслевыми регламентами и рекомендациями по интенсивной технологии возделывания сельскохозяйственных культур [2, 5].

Анализ почвенных и растительных образцов проводили в соответствии с общепринятыми методиками: обменную кислотность pHkcl – потенциометрическим методом (ГОСТ 26483-85), гидролитическую кислотность – по Каппену (ГОСТ 26212-84), сумму обменных оснований – по Каппену-Гильковицу (ГОСТ 27821-

88), подвижные формы фосфора и калия – по Кирсанову (ГОСТ 26207-91), обменные кальций и магний – методом ЦИНАО (ГОСТ 26487-85), гумус – по Тюрину в модификации ЦИНАО (ГОСТ 26212-91). В растительных образцах после мокрого озоления проб в смеси серной кислоты и пергидроля определяли: азот и фосфор фотоколориметрическим индофенольным и ванадо-молибдатным методами, калий на пламенном фотометре, кальций и магний на атомно-абсорбционном спектрофотометре. Органические удобрения анализировали по ГОСТ 26712-85 – ГОСТ 26718-85 (общий азот – в модификации ЦИНАО – индофенольным методом, фосфор – молибдатным методом, калий – на пламенном фотометре).

Осенью 2003, 2004 и 2005 гг. внесено 40 т/га соломистого навоза крупного рогатого скота (НКРС), характеризующегося следующими показателями: влажность — 74,1%, рН в КСІ — 7,60, зольность — 38,4%, N общ. — 0,50%, P_2O_5 — 0,34, K_2O — 0,57%.

Минеральные удобрения (карбамид, простой аммонизированный суперфосфат и хлористый калий) вносили под предпосевную культивацию согласно схеме опыта (табл. 1).

Таблица 1 Схема опыта и распределение удобрений по культурам зернотравяного севооборота на дерново-подзолистой супесчаной почве (2004-2010 гг.)

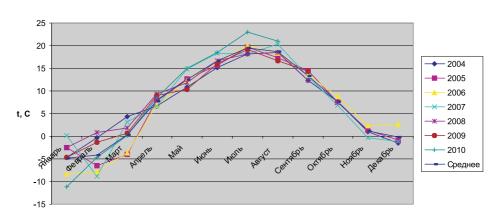
Nº ⊓/⊓	Сумма NPK за севообо- рот, кг/га	Горохо- овсяная смесь 2004-2006 гг.	Ячмень* 2005-2007 гг.	Озимая** рожь +клевер 2006-2008 гг.	Клевер луговой 2007-2009 гг.	Озимое*** тритикале 2008-2010 гг.
1			Контроль	без удобрений		
2	40 т/га НКРС – фон	40 т/га НКРС – фон	П	оследействие 4	0 т/га НКРС –	фон
3	$N_{300}P_{350}$	N ₆₀ P ₇₀	N ₆₀ P ₇₀	P ₇₀ + N ₆₀	P ₇₀	P ₇₀ + N ₉₀₊₃₀
4	$N_{300}K_{600}$	$N_{60}K_{120}$	N ₆₀ K ₁₂₀	K ₁₂₀ + N ₆₀	K ₁₂₀	K ₁₂₀ + N ₉₀₊₃₀
5	$P_{350}K_{600}$	P ₇₀ K ₁₂₀	P ₇₀ K ₁₂₀	P ₇₀ K ₁₂₀	P ₇₀ K ₁₂₀	P ₇₀ K ₁₂₀
6	$N_{180}P_{350}K_{600}$	$N_{30}P_{70}K_{120}$	N ₃₀ P ₇₀ K ₁₂₀	$P_{70}K_{120} + N_{30}$	P ₇₀ K ₁₂₀	P ₇₀ K ₁₂₀ + N ₉₀
7	$N_{300}P_{350}K_{600}$	$N_{60}P_{70}K_{120}$	N ₆₀ P ₇₀ K ₁₂₀	P ₇₀ K ₁₂₀ + N ₆₀	P ₇₀ K ₁₂₀	P ₇₀ K ₁₂₀ + N ₉₀₊₃₀
8	$N_{420}P_{350}K_{600}$	$N_{90}P_{70}K_{120}$	$N_{60+30}P_{70}K_{120}$	$P_{70}K_{120} + N_{60+30}$	P ₇₀ K ₁₂₀	$P_{70}K_{120} + N_{90+30+30}$
9	$P_{200}K_{400}$	P ₄₀ K ₈₀	P ₄₀ K ₈₀	P ₄₀ K ₈₀	P ₄₀ K ₈₀	P ₄₀ K ₈₀
10	$N_{180}P_{200}K_{400}$	$N_{30}P_{40}K_{80}$	$N_{30}P_{40}K_{80}$	$P_{40}K_{80} + N_{30}$	P ₄₀ K ₈₀	P ₄₀ K ₈₀ + N ₉₀
11	$N_{300}P_{200}K_{400}$	$N_{60}P_{40}K_{80}$	$N_{60}P_{40}K_{80}$	$P_{40}K_{80} + N_{60}$	P ₄₀ K ₈₀	$P_{40}K_{80} + N_{90+30}$
12	$N_{420}P_{200}K_{400}$	$N_{90}P_{40}K_{80}$	$N_{60+30}P_{40}K_{80}$	P ₄₀ K ₈₀ + N ₆₀₊₃₀	P ₄₀ K ₈₀	$P_{40}K_{80} + N_{90+30+30}$
13	P ₁₀₀ K ₂₀₀	P ₂₀ K ₄₀	P ₂₀ K ₄₀	P ₂₀ K ₄₀	P ₂₀ K ₄₀	P ₂₀ K ₄₀
14	$N_{180}P_{100}K_{200}$	$N_{30}P_{20}K_{40}$	N ₃₀ P ₂₀ K ₄₀	P ₂₀ K ₄₀ + N ₃₀	P ₂₀ K ₄₀	$P_{20}K_{40} + N_{90}$
15	$N_{300}P_{100}K_{200}$	$N_{60}P_{20}K_{40}$	N ₆₀ P ₂₀ K ₄₀	$P_{20}K_{40} + N_{60}$	P ₂₀ K ₄₀	$P_{20}K_{40} + N_{90+30}$

^{*} Под ячмень + N_{30} в фазу стеблевания. ** Под озимую рожь N весной в фазу возобновления вегетации + N_{30} в фазу стеблевания. *** Под озимое тритикале N весной в фазу возобновления вегетации + N_{30} в фазу стеблевания + N_{30} в фазу последний лист. **** НКРС – навоз крупного рогатого скота

Общая площадь делянки — 45 m^2 (9м х 5м), учетная — 32 m^2 (8м х 4,0 м). Повторность вариантов в опыте — 4-х кратная.

В опыте применяли интегрированную систему защиты растений от сорняков, болезней и вредителей.

При возделывании озимой ржи применяли следующие обработки: **осенью** – обработка семян фунгицидом (винцит 2 л/т), внесение минеральных удобрений $P_{20^{1}40,70}K_{40^{1}80,120}$, обработка посева в фазу 3-4 листьев гербицидом кугар — 1,0 л/га совместно с фунгицидом фундазол (0,5 кг/га) от снежной плесени; **весной** — в фазу кущения (при возобновлении вегетации растений) подкормка азотными удобрениями (карбамид) — 30-60 кг/га, в фазу начала стеблевания (1 узел — стадия 30-31) обработка фунгицидом фалькон (0,6 л/га); в фазу колошения (стадия 51-52) обработка фунгицидом фоликур (1 л/га) совместно с инсектицидом децис (0,05 л/га). Азотные удобрения 90 кг/га д.в. карбамида (мочевины) вносили в два срока 60 кг/га д.в. весной при возобновлении вегетации растений + 30 кг/га д.в. в фазу 2 узел стеблевания на фоне фосфорных и калийных удобрений в расчете на положительные и поддерживающие балансы.


При возделывании озимого тритикале применяли следующие обработки: **осенью** — обработка семян фунгицидом (максим 2 л/т), внесение минеральных удобрений: $P_{20,40,70}K_{40,80,120}$, обработка посева в фазу 3-4 листьев гербицидом кугар — 1,0 л/га совместно с фунгицидом фундазол (0,5 кг/га) от снежной плесени; **весной** — в фазу кущения при возобновлении вегетации растений проводили подкормку азотными удобрениями (карбамид — 60-90 кг/га; в фазу начала стеблевания (1 узел — стадия 30-31) обработка фунгицидом фалькон (0,6 л/га); в фазу колошения (стадия 51-52) обработка фунгицидом фоликур (1 л/га) совместно с инсектицидом децис (0,05 л/га). Азотные удобрения 150 кг/га д.в. карбамида (мочевины) вносили в три срока (90 кг/га весной при возобновлении вегетации растений + 30 кг/га в фазу 1 узел стеблевания + 30 кг/га в фазу последний лист) на фоне фосфорных и калийных в расчете на положительные и поддерживающие балансы — $P_{40.70}K_{80.120}$.


На формирование урожая сельскохозяйственных культур, наряду с питанием растений, большое влияние оказывает водный и температурный режимы почв и воздуха в течение вегетационного периода растений. Как избыток, так и недостаток влаги и тепла негативно сказывается на урожае сельскохозяйственных культур. Наиболее близкими величинами для характеристики оптимального водного и теплового режимов почв и растений являются среднемноголетние показатели осадков и температуры воздуха.

За вегетационный (апрель-август, 2004-2010 гг.) период возделываемых сельскохозяйственных культур распределение осадков, температура воздуха и сумма температур выше 10° С и ГТК отличались от среднемноголетних величин.

За апрель-август 2010 г. выпало 338,6 мм осадков при средней многолетней величине 350 мм. Температура воздуха значительно превышала средний многолетний показатель на 1,9°С в июне, на 5,4°С – в июле и на 4,7°С – в августе. Гидротермический коэффициент (условный показатель увлажнения по Селянинову) в течение вегетационного периода изменялся в пределах 0,9-1,9, что позволило сделать заключение о слабо засушливом периоде в июне и июле (рис. 1).

Температура

Puc. 1. Метеорологические условия в годы проведения исследований

За апрель-август 2009 г. выпало 502,8 мм осадков. Однако в апреле только 4,6 мм (ср. многолетнее 46 мм), а в июне — 255 мм (12 июня 48,1мм, а 23 июня 91,5 мм — ср многолетнее 78 мм). Гидротермический коэффициент в течение вегетационного периода изменялся в пределах от 0,3 (апрель) до 5,6 (июнь), что свидетельствует о высоком избытке влаги не только в июне, но и в мае и в июле, т.к. месяцы с ГТК выше 1,6 характеризуются как избыточно влажные.

За апрель-август 2008 г. выпало 310,1 мм осадков, что только на 40 мм меньше среднемноголетней величины (350 мм). Гидротермический коэффициент изменялся в пределах от 0,8 (июнь) до 1,7 (апрель), что позволяет сделать заключение о некотором недостатке влаги, т. к. месяцы с ГТК от 1,0 до 1,3 (май и август) относятся к слабозасушливым, от 1,0 до 0,7 (июнь) — к засушливым, а от 1,3 до 1,6 (июль) — к оптимальным (рис.1).

Температура воздуха всего периода вегетации 2007 г. превышала среднемноголетний уровень на 1,2-4,0 °C. Количество осадков в апреле и июне в 3 и 2 раза соответственно было меньше средней многолетней величины, а сумма осадков за 5 месяцев — на 70 мм ниже. Недостаток влаги и повышенная температура воздуха оказали отрицательное влияние на урожайность клевера лугового и зерновых во всех вариантах опыта при возделывании на дерново-подзолистой супесчаной почве.

Очень сложные погодные условия сложились в вегетационный период в 2006 г. Апрель характеризовался прохладной и сухой погодой. После посева горохо-овсяной смеси и зерновых за 15 дней при прохладной и ветреной погоде не выпало ни одного мм осадков. В период налива зерна в течение 20 дней во второй половине июня и первой половине июля также осадков не было. В августе выпадение осадков было в три раза выше среднего многолетнего уровня. В сумме за 5 месяцев количество осадков превысило среднемноголетнюю величину на 105 мм.

Вегетационный период 2005 г. отличался затяжной и холодной весной и количеством осадков выше средней многолетней величины в два раза в мае и очень сильным ураганным ветром и проливным дождем в течение двух суток в августе, что продлило созревание зерновых культур на две недели. Недостаток осадков ощущался в июне и июле.

Вегетационный период 2004 г. отличался затяжной и холодной весной и количеством осадков выше средней многолетней величины в июле и августе, что продлило созревание зерновых культур на две недели.

Сумма выпавших осадков за период вегетации (май-август) составила в 2004 г. — 387,4мм, 2005 г. — 399,9, 2006 — 455 мм, 2007 — 281,8, 2008 — 310,1, 2009 — 502,8, 2010 г. — 338,6 мм при средней многолетней величине 302 мм. Сумма активных температур также изменялась по годам исследований, а в соответствии с этими показателями изменялся и условный показатель увлажнения — гидротермический коэффициент (ГТК по Селянинову), который в 2004 г. составил 1,12-2,8, 2005 — 0,73-3,31, 2006 — 1,3-4,8, 2007 — 0,3-2,5, 2008 — 0,8-1,7, 2009 г. — 0,3-5,5, в 2010 г. 1,0-2,7.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Последовательное комплексное применение средств химизации: органических и минеральных удобрений, фунгицидов и инсектицидов в зернотравяном севообороте (горохо-овсяная смесь на зеленую массу — ячмень Гонар — озимая рожь Зарница с подсевом клевера — клевер луговой Устойлівы — озимое тритикале Вольтарио) при возделывании на дерново-подзолистой супесчаной, подстилаемой с глубины 30-50 см песком, почве в среднем по трем полям позволило получить среднегодовую продуктивность на уровне 90-96 ц/га к.ед. Продуктивность на данном уровне получена при применении органо-минеральной системы удобрения (среднегодовом внесении 8,0 т/га подстилочного навоза крупного рогатого скота (НКРС) + $N_{60}P_{70}$ или + N_{36} 60 84 P_{40} 70 K_{80} 120 (табл. 2).

Применение органических и минеральных удобрений благоприятно сказалось на урожайности зеленой массы горохо-овсяной смеси (VSB 1132123 + Стрелец), которая изменялась в зависимости от системы удобрения и составила в 2004 г. 303-558 ц/га, 2005 – 233-365, а в 2006 – 197-361 ц/га (табл. 2).

В среднем за три года (2004-2006 гг.) урожайность зеленой массы горохо-овсяной смеси формировалась на уровне 244-404 ц/га. При внесении минеральных удобрений на фоне 40 т/га органических урожайность зеленой массы практически не зависела от доз фосфорных и калийных удобрений, а увеличивалась при нарастании доз азотных удобрений. Максимальная урожайность 404 ц/га получена в варианте с применением 90 кг/га д.в. азотных удобрений на фоне положительных балансов фосфора и калия – $N_{90}P_{70}K_{120}$. Сбор сухого вещества при применении этой системы удобрения составил 80,7 ц/га, а сбор кормовых единиц - 72,7 ц/га. Прибавка урожайности зеленой массы составила 93 ц/га, при оплате 1 кг NPK 33 кг зеленой массы и 1 кг азотных удобрений – 55,6 кг. Однако оптимальная, математически достоверная урожайность 393 ц/га зеленой массы формировалась при применении $N_{30}P_{40}K_{80}$ на фоне 40 т/га навоза крупного рогатого скота (НКРС) при самой высокой в опыте оплате минеральных удобрений (NPK) 54,7 кг зеленой массы горохо-овсяной смеси. Сбор сухого вещества при системе удобрения с поддерживающими балансами фосфора и калия $(N_{30}P_{40}K_{80})$ составил 78,7 ц/га. Максимальная в опыте оплата азотных удобрений зеленой массой 166 и 94 кг получена при применении N_{∞} на фоне положительных и поддерживающих балансов фосфора и калия $P_{70}K_{120}$ и $P_{40}K_{80}$.

На фоне интегрированной системы защиты растений от сорняков, болезней и вредителей, включающей: обработку семян фунгицидом «ориус» (500 мл/т), химическую прополку: в 2005 г. — «диален-супер» 0,5 л/га + 0,3 л/га «лонтрел», в 2006 г. — «гусар» (0,15 г/га), в 2007 г. — «агритокс» (0,7 л/га) + «лонтрел» 300 (0,3 л/га); защиту от болезней фунгицидами «фалькон» (0,6 л/га) и «фоликур» (1л/га), от вредителей инсектицидом децис-экстра (60 мл/га) оптимальный и энергетически обоснованный уровень урожаев ячменя 38-54 ц/га обеспечивался при применении $N_{60}P_{40}K_{80}$ (РК на поддерживающие балансы) + N_{30} в фазу начала стеблевания на фоне последействия 40 т/га органических удобрений.

Применение удобрений в указанных дозах обеспечивает содержание белка 10,2%, сбор белка — 426 кг/га, форфорных и калийных удобрений — 15,3-8,6, азотных — 9,8-12,2 и последействия органических удобрений — 11,8-12,4% урожайности зерна.

В среднем за три года, в оптимальном по урожайности варианте ($N_{60+30}P_{40}K_{80}$), следующее содержание элементов питания в зерне: N – 1,99%, $P_2O_5 - 0,96$, $K_2O - 0,51$, CaO – 0,04, MgO – 0,17%; в соломе: N – 0,30%, $P_2O_5 - 0,26$, $K_2O - 1,59$, CaO – 0,25, MgO – 0,13%. вынос с 1 т основной и соответствующим количеством побочной продукции следующий: азот – 18,7 кг/т, фосфор – 9,7, калий – 15,9, кальций – 1,7, магний – 2,2 кг/т [7].

В среднем за три года (2006-2008 гг.) оптимальная урожайность зерна диплоидного сорта озимой ржи Зарница 71,7 ц/га формировалась при комплексном, последовательном и совместном применении средств химизации ($N_{90}P_{40}K_{80}$ на фоне последействия 40 т/га навоза КРС). При оптимальной урожайности окупаемость 1 кг NPK составила 15,9 кг и 1 кг азотных удобрений — 27,9 кг зерна, чистый доход 138,8 у.е./га, рентабельность 75,1%, коэффициент энергоотдачи — 2,95.

При оптимальной по урожайности ржи системе удобрения содержание в зерне белка 8,3%; элементов питания: азот -1,61%, фосфор -0,64, калий -0,52, CaO -0,08 и MgO -0,12%; в соломе: соответственно -0,43,0,27,1,40,0,12 и 0,12%; сбор белка -490 кг/га.

Внесение возрастающих доз азотных удобрений (N_{30-90}) обеспечило прибавку урожайности зерна 9,4-25,1 ц/га при увеличении содержания белка на 0,1-0,7% и сбора белка – на 102-270 кг/га.

При повышении доз парных комбинаций фосфорных и калийных удобрений урожайность зерна увеличилась на 5,4-9,3 ц/га, сбор белка — на 39-65 кг/га, а чистый доход и рентабельность снизились.

На фоне последействия 40 т/га органических удобрений урожайность увеличилась на 5,6 ц/га, сбор белка – только на 37 кг/га [8].

В среднем за три года (2007-2009 гг.) получена урожайность зеленой массы клевера лугового Устойливы в 1 укосе на уровне 286-402 ц/га, а во 2-м укосе — 220-299 ц/га. В сумме за два укоса и в среднем за три года внесение $P_{70}K_{120}$ обеспечило урожайность зеленой массы клевера лугового Устойливы на уровне 582-694 ц/га. Внесенные под покровную культуру озимую рожь азотные удобрения в дозах 60 и 90 кг/га снижали урожайность зеленой массы клевера 1 укоса. Максимальная урожайность 694 ц/га зеленой массы формировалась при применении $P_{70}K_{120}$ и внесении $P_{70}K_{120}$ под предшественник — озимую рожь. Прибавка, при сравнении с внесением $P_{40}K_{80}$ и $P_{20}K_{40}$, составила 24 ц/га и 65 ц/га соответственно. Сбор сухого вещества при оптимальной урожайности составил 103,5 ц/га, сена получено 123,2 ц/га, кормовых единиц — 145,5 ц/га.

Среднегодовое содержание сырого белка в 1 укосе изменялось в зависимости от системы удобрения от 13,3 до 15,0% и во 2 укосе – от 13,6 до 17,0%

В среднем за три года (2008-2010 гг.) оптимальная урожайность зерна озимого тритикале Вольтарио 72,6 ц/га формировалась при комплексном последовательном и совместном применении средств химизации, в том числе $N_{150}P_{40}K_{80}$ на фоне последействия 40 т/га навоза КРС.

При оптимальной урожайности зерна озимого тритикале прибавка зерна от NPK составила 31,1 ц/га, в том числе от азотных удобрений – 25,6 ц/га, при оплате 1 кг NPK 11,5 кг и 1 кг азота – 17,1 кг зерна. Последействие органических удобрений (40 т/га) не оказало достоверного влияния на урожайность зерна озимого тритикале. Внесение возрастающих (90,120,150 кг/га) доз азотных удобрений на фоне $P_{20.70}$ к $_{40.120}$ обеспечило прибавку урожайности зерна 17,0-25,6 ц/га при окупаемости 1 кг N – 16,8-21,5 кг зерна. Прибавка от применения фосфорных и калийных удобрений в дозах $P_{20.70}K_{40.120}$ составила 4,4-6,6 ц/га при окупаемости 7,3-3,5 кг зерна. . Эффективность парных комбинаций $N_{120}P_{70}$ и $N_{120}K_{120}$ практически на одном уровне 67,5 и 65,4 ц/га с прибавкой к фону 26,1 и 23,9 ц/га и окупаемости 1 кг NP или NK 13,7 и 10,0 кг зерна соответственно. Прибавка зерна за счет только фосфорных или калийных удобрений составила 2,8 и 0,7 ц/га соответственно. При применении $N_{90+30+30}$ Р₄₀ K_{80} обеспечивается масса 1000 семян 45,69 г, содержание белка — 12,4%, при сборе белка – 768 кг. Увеличение дозы азотных удобрений от 90 до 150 кг/га д.в. и внесение ее в два или три срока способствовало росту содержания азота, фосфора, калия, оксидов кальция и магния в зерне озимого тритикале. При оптимальной урожайности следующее содержание элементов питания в зерне: азот – 1,93, фосфор -0.93, калий -0.67, кальций -0.05 и магний -0.17%; в соломе: N -1.24%, P₂O₅ – 0,60, K₂O – 1,54, CaO – 0,12 и MgO – 0,14%.

Максимальный хозяйственный вынос элементов питания характерен для систем применения удобрений с дозой азота 150 кг/га д.в. ($N_{90+30+30}P_{70}K_{120}$ и $N_{90+30+30}P_{40}K_{80}$). При применении $N_{90+30+30}P_{40}K_{80}$ следующий удельный вынос элементов питания: $N-24,5\%,\,P_2O_5-11,8,\,K_2O-15,6,\,CaO-1,2$ и MgO -2,3% [9].

Таблица 2

Влияние систем удобрения на урожайность культур зернотравяного севооборота на дерново-подзолистой супесчаной почве

)		2	Į					2		1					
ď								Урож	айность	Урожайность основной продукции,	иой прод	,иипже	ц/га							
בא ל	Гор	охо-овс	Горохо-овсяная смесь	lecb		Ячмень	ень			Озимая рожь	чжод в		¥	Клевер луговой	туговой		ö	Озимое тритикале	оитикал	е
ант	2004 г.	2005 r.	2004 r. 2005 r. 2006 r.	еәнт -әdэ	2005 r.	2006 r.	2007 г.	сре-	2006 г.	2007 г.	2008 r.	сре-	2007 r.	2008 r.	2009 r.	сре-	2008 r.	2009 г.	2010 г.	сре-
~	303	233	197	244	32,0	36,2	25,4	31,2	37,0	27,1	34,2	32,8	420	367	741	209	41,7	43,4	36,5	40,5
7	410	257	267	311	36,3	43,4	31,4	37,0	42,8	32,0	40,5	38,4	436	435	918	296	40,5	45,3	38,6	41,5
က	438	331	299	356	52,0	52,4	35,0	46,5	69,3	43,4	8,77	63,5	393	430	1024	616	72,1	63,6	6,99	67,5
4	419	314	302	345	45,9	49,6	38,8	44,8	0,99	42,0	9,62	62,5	400	458	906	288	6,99	68,4	609	65,4
2	469	304	288	354	48,3	164	36,1	44,5	51,2	41,5	50,4	47,7	417	604	992	671	45,1	56,3	43,0	48,1
9	258	358	294	403	53,8	52,5	36,3	47,5	63,9	44,5	65,9	57,1	427	542	1114	694	0,69	9'59	62,8	65,8
_	489	332	361	394	53,8	52,9	37,0	47,9	67,2	46,2	73,4	62,3	400	535	1071	699	66)	68,2	9'99	68,2
∞	499	365	347	404	2,53	53,8	37,4	49,0	26,92	25,0	9'98	72,6	372	496	877	582	84,2	0'89	68,7	73,6
တ	478	352	266	365	46,8	48,8	34,6	43,4	51,0	41,3	47,5	46,6	418	581	961	653	43,5	55,5	41,9	47,0
9	499	352	329	393	51,4	51,5	36,4	46,4	62,6	45,5	8'09	56,3	400	611	686	299	689	8,99	63,3	66,3
11	544	283	337	388	52,9	52,0	34,6	46,5	69,5	47,7	70,4	62,5	419	520	1029	929	74,2	67,3	65,7	69,1
12	498	363	341	401	54,0	54,1	38,0	48,7	74,4	52,5	88,3	71,7	395	451	626	809	83,0	70,0	64,8	72,6
13	481	276	274	344	144,1	44,6	34,3	41,0	50,4	36,8	44,4	43,9	373	529	926	610	43,4	54,2	40,1	45,9
14	490	287	281	353	47,2	47,5	36,1	43,6	60,5	43,1	56,3	53,3	406	532	920	629	0,99	64,0	28,8	65,8
15	514	293	306	371	49,8	50,4	39,9	46,7	67,1	44,3	6,99	59,4	434	440	981	618	66,4	67,2	64,6	66,1
HCP	HCP ₀₅ 15,7	18,9	17,2	10	3,6	2,1	3,22	1,7	3,7	3,2	3,6	3,5	16,8	11	15,4	8	3,13	2,3	2,01	1,4

При возделывании на дерново-подзолистой супесчаной, подстилаемой с глубины 30-50 см песком, почве продуктивность зернотравяного севооборота на уровне 95-96 ц/га к.ед. формировалась при применении органо-минеральной системы удобрения — среднегодовое внесение N_{84} в три срока на фоне $P_{40,70}$ К $_{80,120}$ и среднегодового внесения 8 т/га НКРС. При применении данной системы удобрения получена прибавка от NPK 25,3-25,7 ц/га к.ед., в том числе за счет действия азотных 13,8-15,5 ц/га к.ед.

Оптимальная продуктивность зернотравяного севооборота 95,9 ц/га к.ед. формировалась при применении органо-минеральной системы удобрения (среднегодовое внесение 8 т/га НКРС + $N_{84}P_{40}K_{80}$). Азотные удобрения вносили в три срока. При применении данной системы удобрения получена прибавка от NPK 25,7 ц/га к.ед., в том числе за счет действия азота 15,5 ц/га к.ед., при оплате 1 кг NPK 12,6 кг и 1 кг азотных удобрений 18,5 к.ед.

При применении азотных $(N_{36,60})$ удобрений на фоне фосфорных и калийных в расчете на дефицитные балансы $(P_{20}K_{40})$ недобор продукции, по сравнению с оптимальной по продуктивности системой удобрения составил 10,5-6,7 ц/га к.ед. Хотя, надо отметить, что за счет применения новых сортов клевера лугового и зерновых культур (диплоидного сорта озимой ржи и озимого тритикале Вольтарио) при применении системы удобрения на дефицитные балансы фосфора и калия, а также в вариантах без удобрений и при внесении 40 т/га навоза КРС получена достаточно высокая продуктивность севооборота на уровне 60,5-89,2 ц/га.

Таблица 3 Продуктивность зернотравяного севооборота при возделывании на дерново-подзолистой супесчаной почве (2004-2010 гг.)

1	Среднегодовой вень применения	Среднегодовая продуктивность,	Прибавка, і	ц/га к.ед. от	Окупаемость 1 кг удобрений, к.ед.		
y,	добрений, кг/га	ц/га к.ед.	NPK	N	NPK	N	
1	Без удобрений	60,5	_	_	_	_	
2	8 т/га НКРС-фон	70,2	-	_	-	_	
3	N ₆₀ P ₇₀	90,1	19,9	_	15,3	_	
4	N ₆₀ K ₁₂₀	87,1	16,9	_	9,4	_	
5	P ₇₀ K ₁₂₀	81,7	11,5	_	6,1	_	
6	N ₃₆ P ₇₀ K ₁₂₀	93,1	22,9	11,4	10,1	31,7	
7	N ₆₀ P ₇₀ K ₁₂₀	93,9	23,7	12,2	9,5	20,3	
8	N ₈₄ P ₇₀ K ₁₂₀	95,5	25,3	13,8	9,2	16,4	
9	P ₄₀ K ₈₀	80,4	10,2	-	8,5	-	
10	N ₃₆ P ₄₀ K ₈₀	91,1	20,9	10,7	13,4	29,7	
11	N ₆₀ P ₄₀ K ₈₀	93,1	22,9	12,7	12,7	21,2	
12	N ₈₄ P ₄₀ K ₈₀	95,9	25,7	15,5	12,6	18,5	
13	P ₂₀ K ₄₀	76,0	5,8	-	9,7	-	
14	N ₃₆ P ₂₀ K ₄₀	85,4	15,2	9,4	15,8	26,1	
15	N ₆₀ P ₂₀ K ₄₀	89,2	19,0	13,2	15,8	22,0	
	HCP ₀₅	1,7					

^{*} Внесение азотных удобрений в два или три срока

В формировании продуктивности севооборота на дерново-подзолистой супесчаной почве при применении разных доз азотных удобрений на фоне дефицитных (50% компенсации выноса), поддерживающих (100% компенсации) и положительных (150% компенсации выноса) балансов P_2O_5 и K_2O , следует отметить, что плодородие почвы имело основное значение 63,1-67,8%. Внесение азотных удобрений обеспечило 14,4-16,2%, фосфорных и калийных – 6,5-12,0% и органических удобрений – 10,2-10,9% продуктивности. Причем роль почвы и органических удобрений максимальная (67,8% и 10,9% соответственно) на фоне дефицитных балансов фосфора и калия, азотных удобрений – 16,2% на фоне поддерживающих балансов фосфора и калия, а фосфорных и калийных – на фоне положительных балансов – 12,0% (табл. 4).

Таблица 4
Роль исследуемых факторов в формировании продуктивности севооборота на дерново-подзолистой супесчаной почве

		Долевое участие						
Факторы	PK –	50%	PK –	100%	PK –	150%		
	ц/га	%	ц/га	%	ц/га	%		
Почва	60,5	67,8	60,5	63,1	60,5	63,4		
Органические удобрения	9,7	10,9	9,7	10,7	9,7	10,2		
РК – удобрения	5,8	6,5	10,2	10,6	11,5	12,0		
N – удобрения	13,2	14,8	15,5	16,2	13,8	14,4		
Продуктивность, ц/га к.ед.	89,2	100%	95,9	100%	95,5	100%		

Вынос с кормовой единицей фосфора, кальция и магния не зависел от системы удобрения и характеризовался постоянными величинами – 0,5, 0,3, и 0,2 кг. Вынос азота с кормовой единицей изменялся в пределах 1,1 (варианты с внесением $P_{20^140^170}K_{40^180^120}) - 1,3$ ($N_{60}P_{70}$) и калия 1,2 (без удобрений) – 1,7 ($P_{70}K_{120}$ и $N_{36}P_{70}K_{120}$) кг.

В соответствии с методикой [10] был рассчитан баланс элементов питания в севообороте. В приходную статью включено поступление азота, фосфора и калия с органическими ($N_{20}P_{13}$,6 $K_{22,8}$) и минеральными удобрениями; осадками и семенами ($N_{13,9}P_{1,6}K_{10,7}$), среднегодовая фиксация азота свободноживущими микроорганизмами 15,0 кг/га и среднегодовая фиксация азота 1 ц зеленой массы клевера лугового 0,35 кг азота и горохо-овсяной смеси – 0,20 кг. В статью расхода: вынос элементов питания сельскохозяйственными культурами, газообразные потери азота, которые в среднем составляют 25% от общего количества, внесенного с минеральными и органическими удобрениями, вынос с инфильтрационными водами ($N_{10}K_{25}$) (табл. 6).

Баланс азота во всех вариантах в зернотравяном севообороте положительный от 47,4 кг/га до 109,8 кг/га при его интенсивности 150-171%. Считаем, что положительным балансом азота также можно объяснить высокую продуктивность севооборота в вариантах без минеральных удобрений. При применении $N_{84}P_{40}K_{80}$ на фоне 8 т/га навоза КРС баланс фосфора и калия – отрицательный. при внесении N_{84} на фоне $P_{70}K_{120}$ баланс по калию отрицательный, а по фосфору – положительный и составил 15,3 кг/га при его интенсивности 122. Отрицательный баланс по калию объясняется очень высоким выносом калия

горохо-овсяной смесью и клевером. Баланс по калию отрицательный при возделывании горохо-овсяной смеси в пределах 88-167 кг/га, а по клеверу — 225-350 кг/га (табл. 5).

Таблица 5 Среднегодовой баланс элементов питания в зернотравяном севообороте на дерново-подзолистой супесчаной почве

	Аз	ОТ	Фос	фор	Калий		
Вариант	баланс,	ИБ*,	баланс,	ИБ*,	баланс,	ИБ*,	
	± кг/га	%	± кг/га	%	± кг/га	%	
1.Без удобрений	47,4	150	-39,9	4	-102,4	9	
2.Навоз, 8 т/га– фон	72,7	166	-34,8	30	-110,0	23	
3.N ₆₀ P ₇₀	98,7	165	21,0	133	-132,9	20	
4.N60K ₁₂₀	98,7	167	-46,4	25	-47,9	76	
5.P ₇₀ K ₁₂₀	73,1	157	25,8	143	-47,4	76	
6.N ₃₆ P ₇₀ K ₁₂₀	91,1	159	16,7	124	-72,8	68	
$7.N_{60}P_{70}K_{120}$	109,8	171	19,0	129	-70,5	69	
8.N ₈₄ + P ₇₀ K ₁₂₀	98,6	156	15,3	122	-76,8	67	
9.P ₄₀ K ₈₀	71,1	156	-2,7	95	-79,5	59	
10.N ₃₆ P ₄₀ K ₈₀	91,3	161	-10,5	84	-94,8	54	
11.N ₆₀ P ₄₀ K ₈₀	101,9	164	-12,8	81	-99,9	53	
12.N ₈₄ + P ₄₀ K ₈₀	107,8	163	-13,7	80	-105,2	52	
13.P ₂₀ K ₄₀	66,5	154	-20,9	63	-99,8	42	
14.N ₃₆ P ₂₀ K ₄₀	86,7	161	-22,5	61	-109,1	40	
15.N ₆₀ P ₂₀ K ₄₀	100,6	166	-26,9	57	-107,1	41	

ИБ* – интенсивность баланса; ⁺ – дробное внесение азота.

В среднем по трем полям содержание гумуса за ротацию севооборота изменялось в пределах ошибки опыта (различия по вариантам составили от +0,09 до -0,12%). кислотность пахотного слоя достоверно повышалась на 0,15-0,34 ед. Содержание подвижного фосфора за ротацию севооборота имело тенденцию к снижению или достоверно снижалось на 10-32 мг/кг почвы, несмотря на положительный баланс при системе удобрения в расчете на положительный баланс фосфора. содержание подвижного калия практически во всех вариантах достоверно снизилось на 27-48 мг/кг почвы (табл. 6).

Таким образом, при применении различных систем удобрения сельскохозяйственных культур в зернотравяном севообороте: горохо-овсяная смесь — ячмень — озимая рожь с подсевом клевера — клевер луговой — озимое тритикале в условиях окультуренной дерново-подзолистой супесчаной почвы наиболее эффективной является органо-минеральная система удобрения, включающая среднегодовое применение азотных удобрений в дозе 84 кг/га д.в. на фоне фосфорных и калийных $P_{40,70}K_{80,120}$ в расчете на 100-150% компенсацию выноса P_2O_5 и K_2O на фоне 8 т/га органических удобрений, при которой обеспечивается продуктивность севооборота на уровне 95-96 ц/га к.ед. Однако, при применении указанных доз органических и минеральных удобрений в пахотном слое дерново-подзолистой

супесчаной почвы наблюдается повышение кислотности на 0,33-0,34 ед., снижение содержания фосфора на 23-17 мг/кг и калия на – 44-36 мг/кг почвы.

Таблица 6 Динамика агрохимических показателей пахотного слоя дерново-подзолистой супесчаной почвы в зернотравяном севообороте

Nº		рН _{ксі}		P	₂ O ₅ , мг/	КГ	К	20, мг/к	Г	[умус,%	0
п/п	2003- 2005	2008- 2010	+	2003- 2005	2008- 2010	+	2003- 2005	2008- 2010	+	2003- 2005	2008- 2010	+
1	5,82	5,66	-0,16	168	136	-32	110	71	-39	2,60	2,63	0,03
2	5,87	5,72	-0,15	185	154	-31	125	92	-33	2,79	2,76	-0,03
3	5,78	5,55	-0,23	256	226	-30	114	74	-40	2,83	2,81	-0,02
4	5,84	5,65	-0,19	187	158	-29	247	220	-27	3,02	2,90	-0,12
5	5,86	5,67	-0,19	270	257	-13	275	238	-37	2,90	2,85	-0,05
6	5,81	5,54	-0,27	275	264	-11	246	213	-33	2,94	2,83	-0,11
7	5,78	5,47	-0,31	285	258	-27	239	202	-37	2,87	2,86	-0,01
8	5,72	5,38	-0,34	281	264	-17	238	202	-36	2,91	2,90	-0,01
9	5,82	5,62	-0,20	277	250	-27	246	216	-30	2,99	2,89	-0,10
10	5,77	5,57	-0,20	255	245	-10	226	188	-38	2,98	2,90	-0,08
11	5,76	5,50	-0,26	260	235	-25	202	154	-48	2,91	2,89	-0,02
12	5,75	5,42	-0,33	245	222	-23	192	148	-44	2,89	2,91	0,02
13	5,80	5,69	-0,11	237	214	-23	197	161	-36	2,88	2,85	-0,03
14	5,81	5,62	-0,19	221	199	-22	162	133	-29	3,00	2,98	-0,02
15	5,84	5,59	-0,25	217	187	-30	146	109	-37	2,81	2,90	0,09
HCP	0,08	0,08		24,6	26,3		17,9	18,2		0,31	0,28	

выводы

- 1. На дерново-подзолистой супесчаной, подстилаемой песками с глубины 0,3-0,5 м, почве оптимальная урожайность зеленой массы горохо-овсяной смеси на уровне 390-400 ц/га формировалась при применении органо-минеральной системы удобрения 40 т/га навоза КРС + $N_{30-90}P_{40'70}K_{80,120}$. Эти варианты системы удобрения обеспечивали достаточно высокие параметры окупаемости удобрений 33,0-54,7 кг зеленой массы на 1 кг NPK и 38-166 кг зеленой массы на 1 кг азота.
- 2. Наиболее эффективными дозами минеральных удобрений под ячмень на фоне последействия 40 т/га органических удобрений являются $N_{60+30}P_{40}K_{80}$. Внесение указанных доз минеральных удобрений обеспечивало получение урожайности зерна в среднем за три года 48,7 ц/га. Последействие органических удобрений обеспечивало получение дополнительной урожайности зерна ячменя 5,8 ц/га. Применение удобрений в указанных дозах обеспечивало содержание белка 10,2%, сбор белка 426 кг/га, коэффициент энергоотдачи 1,5 ед. и коэффициенты использования элементов питания из удобрений азота 37%, фосфора 32%, калия 45%. За счет плодородия почвы формировалось 63,7-66,8%, фосфорных

и калийных удобрений – 15,3-8,6, азотных – 9,8-12,2 и последействия органических удобрений – 11,8-12,4 урожайности зерна.

3. В среднем за три года оптимальная урожайность зерна диплоидного сорта озимой ржи Зарница 71,7 ц/га формировалась при комплексном последовательном и совместном применении средств химизации. Оптимальный срок внесения азотных удобрений — N_{60} весной в начале возобновления вегетации растений + N_{30} в стадию 1-го узла на фоне $P_{40}K_{80}$ (внесение осенью в расчете на поддерживающие балансы) и последействия 40 т/га навоза КРС. При данной системе удобрения окупаемость 1 кг NPK составила 15,9 кг и 1 кг азотных удобрений — 27,9 кг зерна, чистый доход 138,8 у.е./га, рентабельность 75,1%, коэффициент энергоотдачи — 2,95.

При оптимальной системе удобрения содержание в зерне ржи белка 8,3%; элементов питания: азот -1,61, фосфор -0,64, калий -0,52, CaO -0,08 и MgO -0,12%; в соломе: соответственно -0,43,0,27,1,40,0,12 и 0,12%; сбор белка -490 кг/га.

- 4. В сумме за два укоса и в среднем за три года внесение $P_{70}K_{120}$ обеспечило урожайность зеленой массы клевера лугового Устойливы на уровне 582-694 ц/га. Внесенные под покровную культуру озимую рожь, азотные удобрения в дозах 60, 90 кг/га снижали урожайность зеленой массы клевера 1 укоса. Максимальная урожайность 694 ц/га формировалась при применении $P_{70}K_{120}$ и внесении $N_{30}P_{70}K_{120}$ под предшественник озимую рожь. Прибавка, при сравнении с внесением $P_{40}K_{80}$ и $P_{20}K_{40}$, составила 24 ц/га и 65 ц/га соответственно. Сбор сухого вещества при оптимальной урожайности составил 103,5 ц/га, сена получено 123,2 ц/га, кормовых единиц 145,5 ц/га. Среднегодовое содержание сырого белка в 1 укосе изменялось в зависимости от системы удобрения от 13,3 до 15,0% и во 2 укосе от 13,6 до 17,0%
- 5. Оптимальная урожайность зерна озимого тритикале Вольтарио 72,6 ц/га формировалась при комплексном последовательном и совместном применении средств химизации. Азотные удобрения 150 кг/га д.в. карбамид (мочевина) вносили в три срока (90 кг/га весной при возобновлении вегетации растений + 30 кг/га в фазу 1 узел стеблевания + 30 кг/га в фазу последний лист) на фоне фосфорных и калийных в расчете на поддерживающие балансы $P_{40}K_{80}$ и последействия 40 т/га органических удобрений. При данной системе удобрения прибавка зерна от NPK составила 31,1 ц/га, в том числе от азотных удобрений 25,6 ц/га, при оплате 1 кг NPK 11,5 кг и 1 кг азота 17,1 кг зерна. Последействие органических удобрений (40 т/га) не оказало достоверного влияния на урожайность зерна озимого тритикале. При оптимальной урожайности следующее содержание элементов питания в зерне: азот 1,93, фосфор 0,93, калий 0,67, кальций 0,05 и магний 0,17%; в соломе: N 1,24%, P_2O_5 0,60, K_2O 1,54, CaO 0,12 и MgO 0,14%.
- 6. При возделывании зернотравяного севооборота на дерново-подзолистой супесчаной почве, наиболее эффективной является органо-минеральная система удобрения с внесением $N_{84}P_{40}K_{80}$ на фоне 8,0 т/га среднегодового применения органических удобрений. Рекомендуемая система удобрения обеспечила продуктивность севооборота на уровне 6 ц/га к.ед. Однако плодородие почвы при этом ухудшилось: кислотность почвы повысилась на 0,33 единицы, содержание подвижных фосфора и калия снизилось на 23 и 44 мг/кг почвы соответственно.

ЛИТЕРАТУРА

- 1. Адаптивные системы земледелия в Беларуси / Под общ. Редакцией А.А. Попкова. Мн.:, 2001. 308 с.
- 2. Современные ресурсосберегающие технологии производства растениеводческой продукции в Беларуси / Ф.И. Привалов [и др.]. Минск: ИВЦ Минфина. 2007. 448 с.
- 3. Справочник агрохимика / В.В. Лапа [и др.]. Минск: Белорусская наука, 2007. 390 с.
- 4. Лапа, В.В. Применение макро- и микроудобрений в технологиях возделывания сельскохозяйственных культур / В.В.Лапа, М.В. Рак // Белорусское сельское хозяйство. №4(84). 2006. С. 40-44.
- 5. Организационно-технологические нормативы возделывания сельскохозяйственных культур: сб. отрасл. Регламентов / Ин-т аграр. экономики НАН Беларуси; рук. разраб. В.Г. Гусаков и [др.]. Минск: Белорусская наука, 2005. 460 с.
- 6. Лапа, В.В. Продуктивность зернотравяно-пропашного севооборота и плодородие дерново-подзолистой супесчаной почвы при применении различных систем удобрения / В.В. Лапа, Н.Н. Ивахненко, А.А. Бавтрук // Агрохимия. 2009. №6 С. 1-10
- 7. Лапа В.В., Ивахненко Н.Н., Грачева А.А. Влияние доз и соотношений минеральных удобрений на урожайность и качество ячменя Гонар при возделывании на дерново-подзолистой супесчаной почве / В.В. Лапа, Н.Н. Ивахненко, А.А. Грачева // Почвоведение и агрохимия. 2009. №1(42). С. 102-111.
- 8. Эффективность минеральных удобрений при возделывании озимой ржи Зарница на дерново-подзолистой супесчаной почве / В.В. Лапа, Н.Н. Ивахненко, А.В. Пилипчук // Современные технологии сельскохозяйственного производства: материалы XII Междунар. науч.-практ. конф., Гродно, 2009 г. / ГГАУ. Гродно, 2009. С. 204-205.
- 9. Эффективность систем удобрения при возделывании озимого тритикале на дерново-подзолистой супесчаной почве / В.В. Лапа [и др.] // Почвоведение и агрохимия. 2010. №2(45). С.98-108.
- 10. Методика расчета баланса элементов питания в земледелии Республики Беларусь / В.В. Лапа [и др.]; Ин-т почвоведения и агрохимии. Мн. 2007. 26 с.

CROP ROTATION PRODUCTIVITY AND FERTILITY OF LUVISOL LOAMY SAND SOIL UNDER DIFFERENT FERTILIZER SYSTEM

V.V. Lapa, N.N. Ivakhnenko, M.M. Lomonos, A.A. Grachova, A.V. Bachyshcha

Summary

Under the implementation of different fertilizer systems of agricultural cultures in rotation such as pea-oat mixture – winter rye sowing with clover – madow clover – winter triticale cultivated in sod-podzolic sandy loam soil the most effective-is the organo-mineral system of fertilization, involving the use of phosphorus and potassium fertilizers ($R_{40}K_{80}$) the rate of 100% compensation for removal of P_2O_5 and K_2O and the introduction of 84 kg of nitrogen-fertilizers in three terms against the 8 t/ha of organic

fertilizer, which provides a pro-inductance rotation of 95.9 kg/ha. However, the fertility of the soil at the same time has worsened: the acidity of the soil has increased by 0.33 units; the content of mobile phosphorus and potassium has decreased by 23 and 44 mg/kg soil respectively.

Поступила 22 марта 2011 г.

УДК 631.582:631.874

ВЛИЯНИЕ РАЗЛИЧНОГО ИСПОЛЬЗОВАНИЯ ЗЕЛЕНОЙ МАССЫ РЕДЬКИ МАСЛИЧНОЙ, СОЛОМЫ, МИНЕРАЛЬНЫХ УДОБРЕНИЙ НА ПРОДУКТИВНОСТЬ ЗВЕНА СЕВООБОРОТА НА ДЕРНОВО-ПОДЗОЛИСТОЙ РЫХЛОСУПЕСЧАНОЙ ПОЧВЕ

В.В. Лапа¹, В.И. Ульянчик², Т.М. Серая¹, Т.В. Гончаревич², С.Н. Кобринец²
¹Институт почвоведения и агрохимии, г. Минск, Беларусь
²Брестская областная сельскохозяйственная опытная станция,
г. Пружаны, Беларусь

ВВЕДЕНИЕ

Одной из главных задач современного земледелия является воспроизводство и сохранение почвенного плодородия. Наиболее острым, требующим незамедлительного вмешательства, является вопрос пополнения органическим веществом пахотных земель, особенно легкого гранулометрического состава, которые в Брестской области занимают более 80% [1, 2].

Важным источником пополнения органического вещества почвы может быть запашка соломы, зеленой массы сидерата промежуточных культур с соломой. При использовании зеленой массы на кормовые цели дополнительным видом органического вещества служат корневые и пожнивные остатки [3, 4]. Указанные источники органического вещества почвы имеют различные соотношения между С и N [5], это требует разработки системы внесения минеральных удобрений, прежде всего азотных, особенно под пропашные культуры, которые наиболее эффективно отзываются на применение названных видов органического вещества.

Цель настоящей работы – установить действие и последействие запашки соломы, сидерата и пожнивно-корневых остатков редьки масличной на продуктивность культур звена севооборота и содержание гумуса в дерново-подзолистой рыхлосупесчаной почве.

ОБЬЕКТЫ И МЕТОДИКА ИССЛЕДОВАНИЙ

Исследования проводили в 2004-2009 гг. на стационарном опытном участке Брестской ОСХОС. Почва опытного участка дерново-подзолистая рыхлосупесчаная, развивающаяся на пылевато-песчанистой супеси, подстилаемой с глубины до 1 м рыхлым песком.

Пахотный горизонт характеризовался следующими агрохимическими показателями: pH_{KCI} (потенциометрическим методом) – 6,0-6,3; P_2O_5 и K_2O (по Кирса-