УДК 631.81.095.337:633:631.445.2

ЭФФЕКТИВНОСТЬ МИКРОУДОБРЕНИЙ ЭЛЕГУМ ПРИ ВОЗДЕЛЫВАНИИ ОЗИМОЙ ПШЕНИЦЫ И ЯЧМЕНЯ НА ДЕРНОВО-ПОДЗОЛИСТЫХ ПОЧВАХ

М.В. Рак¹, В.В. Лапа¹, Г.А. Соколов², С.А. Титова¹, Т.Г. Николаева¹, Е.Н. Пукалова¹

¹Институт почвоведения и агрохимии, г. Минск, Беларусь ²Институт природопользования НАН Беларуси, г. Минск, Беларусь

ВВЕДЕНИЕ

При возделывании зерновых культур по интенсивным технологиям, при высоком уровне минерального питания, резко возрастает роль микроэлементов. Эффективность микроэлементов зависит от почвенно-агрохимических условий, биологических особенностей растений, видов и форм микроудобрений, соотношения цен на продукцию и микроудобрения. Установлено, что на почвах с низким содержанием микроэлементов внесение микроудобрений может повысить урожай на 10–15 % и более. Возделывание зерновых культур невозможно без таких микроэлементов, как медь, марганец, цинк и бор. Микроэлементы играют важную роль в физиологических и биохимических процессах развития растений, входят в состав ферментов, витаминов, гормонов и других веществ, участвуют в процессах синтеза и передвижения углеводов, в белковом и жировом обмене веществ. При их дефиците нарушаются процессы обмена веществ в растениях, задерживается их развитие, снижается устойчивость к неблагоприятным условиям внешней среды и болезням. Недостаток микроэлементов может привести не только к снижению урожая, но и к резкому ухудшению его качества [1, 2, 3, 4].

Эффективность удобрений во многом определяется способом их внесения. В практике сельского хозяйства эффективными способами применения микроудобрений является предпосевная обработка семян и некорневые подкормки растений. Предпосевная обработка семян оказывает положительное действие на их всхожесть и устойчивость к неблагоприятным факторам внешней среды. Некорневая подкормка позволяет снизить норму расхода дорогостоящих микроудобрений и устранить дефицит микроэлементов в критические фазы роста и развития растений [5, 6].

Для обеспечения потребности сельскохозяйственных культур в элементах питания, а также учитывая высокую стоимость импортных удобрений, в последние годы ведется разработка новых, более экономичных и технологичных видов отечественных микроудобрений. Наиболее эффективной формой микроэлементов для растений является перевод их в комплексные соединения металлов типа хелатов. Эффективность хелатных форм выше, чем химических солей, они легкорастворимы в воде и более технологичны в применении. Микроудобрения в данной форме отличаются низкой токсичностью и обеспечивают высокую эффективность даже в малых дозах, они более подвижны и доступны для растений.

Большое значение имеет использование регуляторов роста природного происхождения как биологического резерва повышения продуктивности культур. К группе таких веществ относится биологически активный препарат природного происхождения, получаемый на основе гуминовых веществ. Гуминовый препарат выделяется посредством обработки торфа водным раствором аммиака при повышенной температуре и давлении с последующим обогащением микроэлементами в хелатной и органо-минеральной форме.

Цель исследований заключалась в разработке и изучении эффективности новых жидких двухкомпонентных комплексных микроудобрений ЭлеГум при возделывании озимой пшеницы и ячменя на дерново-подзолистых почвах.

МЕТОДИКА И ОБЪЕКТЫ ИССЛЕДОВАНИЙ

Исследования по изучению эффективности жидких двухкомпонентных комплексных микроудобрений ЭлеГум на урожайность и качество озимой пшеницы и ярового ячменя проводились в 2009—2011 гг. в полевых опытах на дерновоподзолистых почвах.

В СПК «Щемыслица» Минского района на дерново-подзолистой легкосуглинистой почве проведены исследования по применению жидких микроудобрений ЭлеГум в предпосевную обработку семян и некорневые подкормки озимой пшеницы Тонация. Агрохимические показатели пахотного горизонта почвы опытных участков: рН в КСІ — 5.82-6.44, содержание гумуса — 1.62-2.11 %, $P_2O_5-348-378$ мг/кг почвы, $K_2O-237-279$, Cu-1.76-1.93, Mn обм. — 1.88-5.3, Zn — 2.0-2.85 мг/кг почвы. Исследования с озимой пшеницей проводили на фоне $N_{173}P_{70}K_{150}$. Площадь делянки — 25 м², повторность опыта — 4-кратная.

Эффективность предпосевной обработки семян и некорневой подкормки посевов ячменя Атаман и Батька микроудобрениями ЭлеГум изучали в полевых опытах в РУП «Экспериментальная база им. Суворова» Узденского района на дерново-подзолистой супесчаной почве. Агрохимическая характеристика пахотного горизонта почвы опытных участков: рН в KCI-5,21-6,56, содержание гумуса – 2,01-2,6 %, $P_2O_5-144-210$ мг/кг почвы, $K_2O-190-285$, Cu-1,55-2,0, Mn обм. – 1,0-2,77, Zn -2,41-4,37 мг/кг почвы. Исследования проводили на фоне $N_{65}P_{90}K_{150}$ и $N_{90}P_{90}K_{150}$. Площадь делянки -25 м², повторность опыта -3,4-кратная.

Технология возделывания озимой пшеницы и ячменя общепринятая для республики. Минеральные удобрения вносили в виде мочевины, КАС, аммофоса и хлористого калия. Во время вегетации культур осуществлялся уход за посевами, применялись средства защиты. Уборку проводили комбайном «Сампо—500» в фазу полной спелости зерна. Учет урожая зерна озимой пшеницы и ячменя — сплошной поделяночный.

Разработанные двухкомпонентные комплексные микроудобрения ЭлеГум представляют собой жидкие микроудобрения, изготовленные путем обогащения гуминовых торфяных экстрактов различными наборами и соотношением микроэлементов меди и марганца, бора и меди, цинка и марганца, бора и марганца, бора и цинка (ТУ ВҮ 100289079.041–2011). Хорошо растворимы в воде, нетоксичны. В зависимости от назначения микроудобрения ЭлеГум представлены шестью марками, которые отличаются друг от друга по составу и содержанию микроэлементов. Химический состав жидких комплексных микроудобрений ЭлеГум представлен в таблице 1.

Таблица 1 Химический состав жидких комплексных микроудобрений ЭлеГум

Марки	Бор	Цинк	Медь	Марганец	Гуминовые вещества
микроудобрения			Г	/л	
ЭлеГум Медь-Марганец	_	_	25–33	25–33	10
ЭлеГум Медь-Цинк	_	25	25	_	10
ЭлеГум Бор-Марганец	50–100	_	_	25–50	10
ЭлеГум Бор-Цинк	50	50	_	_	10
ЭлеГум Бор-Медь	50–100	_	25–50	_	10
ЭлеГум Цинк-Марганец	_	20–30	_	20–30	10

Комплексные микроудобрения ЭлеГум предназначены для предпосевной обработки семян и некорневых подкормок сельскохозяйственных культур. При предпосевной обработке семян зерновых культур расход рабочего раствора 10 л/т. Рабочий раствор готовился непосредственно перед предпосевной обработкой семян в рабочей емкости машины при непрерывном перемешивании и использовался в день приготовления. Некорневые подкормки озимой пшеницы различными марками микроудобрений ЭлеГум в дозе 1,0 л/га проводили в фазу начало кущения осенью, в стадию первого узла и в фазу выхода флагового листа, ячменя — в фазу выхода в трубку в дозе 1,0 л/га. Рабочий раствор готовился непосредственно перед проведением некорневой подкормки растений путем разведения концентрата удобрения водой. Расход рабочего раствора 200 л/га.

Исследования проводили в соответствии с методическими указаниями по закладке полевых опытов. Статистическая обработка результатов исследований проведена методом дисперсионного анализа. Схемы опытов, дозы микроудобрений и фоны минеральных удобрений представлены далее в таблицах.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Результаты исследований показали, что применение различных марок микроудобрений ЭлеГум при возделывании озимой пшеницы и ячменя способствует повышению урожайности. Величина прибавок урожая зерна зависела от способа, марок и доз вносимых микроудобрений.

При возделывании озимой пшеницы предпосевная обработка семян и некорневые подкормки жидкими комплексными микроудобрениями на основе гуматов торфа с медью, бором, цинком и марганцем ЭлеГум на фоне минеральных удобрений способствовали повышению урожайности зерна, не снижая показателей его качества. В среднем за два года исследований предпосевная обработка семян различными марками микроудобрений ЭлеГум обеспечила достоверное повышение урожайности зерна. При урожайности в фоновом варианте 62,1 ц/га

применение микроудобрения ЭлеГум Медь-Марганец в дозе 3,0 л/т в предпосевную обработку семян озимой пшеницы обеспечило прибавку урожайности зерна 4,7 ц/га (табл. 2).

Наибольшая эффективность новых микроудобрений получена от их применения в некорневые подкормки. Внесение микроудобрений ЭлеГум в трехкратную некорневую подкормку (в фазу начало кущения – осенью, в стадию первого узла и в фазу выхода флагового листа) озимой пшеницы способствовало повышению урожайности зерна в сравнении с вариантом, где микроэлементы не применялись. Так, от некорневых подкормок озимой пшеницы в зависимости от марок микроудобрений получены следующие прибавки урожайности зерна: ЭлеГум Бор-Медь – 5,4 ц/га, ЭлеГум Медь-Марганец – 6,0 ц/га, ЭлеГум Цинк-Марганец – 4,2 ц/га и ЭлеГум Медь-Цинк – 4,3 ц/га. По годам прибавки зерна от микроудобрений достигали от 3,7 ц/га до 6,4 ц/га при урожайности в фоновом варианте 49,9 и 62,1 ц/га.

Таблица 2 Влияние микроудобрений ЭлеГум на урожайность зерна озимой пшеницы

Panusum.	Урс	Прибавка к фону,			
Варианты	2010 г.	2011 г.	среднее	ц/га	
1. NPK – фон	49,9	74,3	62,1	_	
Предпосевная об	работка с	емян			
2. Фон + ЭлеГум Медь-Марганец (3,0 л/т)	54,4	79,1	66,8	4,7	
Некорневая подкормка					
3. Фон + ЭлеГум Бор-Медь (1,0 л/га)	55,2	79,8	67,5	5,4	
4. Фон + ЭлеГум Медь-Марганец (1,0 л/га)	55,4	80,7	68,1	6,0	
5. Фон + ЭлеГум Цинк-Марганец (1,0 л/га)	53,6	78,9	66,3	4,2	
6. Фон + ЭлеГум Медь-Цинк (1,0 л/га)	53,9	78,8	66,4	4,3	
HCP ₀₅		2,5			

Наряду с увеличением урожайности от применения макро- и микроудобрений, важны и качественные показатели зерна. Исследования показали, что при возделывании озимой пшеницы применение различных марок микроудобрений ЭлеГум практически не оказало влияния на содержание белка и клейковины в зерне (табл. 3).

Таблица 3

Влияние микроудобрений ЭлеГум на качество зерна озимой пшеницы

		Белок, %		CG	Сбор белка, ц/га	ц/га	Κ	Клейковина, %	ı, %
Dapmanibi	2010 г.	2011 г.	среднее	2010 r.	2011 г.	среднее	2010 r.	2011 r.	среднее
1. NPK – фон	13,6	12,0	12,8	5,8	9,7	6,7	28,8	25,4	27,1
		Предп	Предпосевная обработка семян	работка с	емян				
2. Фон + ЭлеГум Медь- Марганец (3,0 л/т)	13,8	11,2	12,5	6,5	7,6	7,1	29,2	23,7	26,5
		¥	Некорневая подкормка	юдкормк	æ				
3. Фон + ЭлеГум Бор-Медь (1,0 л/га)	13,7	11,9	12,8	6,5	8,2	7,4	29,1	25,2	27,2
4. Фон + ЭлеГум Медь- Марганец (1,0 л/га)	14,0	11,9	13,0	2'9	8,3	7,5	29,6	25,2	27,4
5. Фон + ЭлеГум Цинк- Марганец (1,0 л/га)	14,0	12,0	13,0	2'9	8,1	7,4	29,6	25,4	27,5
6. Фон + ЭлеГум Медь-Цинк (1,0 л/га)	13,9	12,0	13,0	6,4	8,1	7,3	29,5	25,4	27,5

Предпосевная обработка семян ячменя различными марками микроудобрений ЭлеГум обеспечивала повышение урожайности зерна в среднем за два года на 2,4—4,2 ц/га при урожайности в фоновом варианте 46,1 ц/га (табл. 4). Наилучший результат показали марки микроудобрений ЭлеГум Медь-Марганец и ЭлеГум Бор-Марганец. Некорневая подкормка ячменя в фазу выхода в трубку исследуемыми микроудобрениями также способствовала повышению урожайности зерна. В зависимости от марок микроудобрений в среднем за годы исследований прибавки составили: ЭлеГум Бор-Медь — 4,3 ц/га, ЭлеГум Медь-Марганец — 5,8 ц/га, ЭлеГум Цинк-Марганец — 4,6 ц/га и ЭлеГум Медь-Цинк — 3,7 ц/га. Прибавки зерна ячменя в опытах несколько отличались по годам исследований и составили 3,6—6,5 ц/га.

Таблица 4 Влияние микроудобрений ЭлеГум на урожайность зерна ячменя

Penusuru .	Уро	жайност	Прибавка		
Варианты	2010 г.	2011 г.	среднее	к фону, ц/га	
Предпосевная с	бработка	семян			
1. NPK – фон	41,5	50,7	46,1	_	
2. Фон + ЭлеГум Медь-Марганец (4,0 л/т)	44,9	55,4	50,2	4,1	
3. Фон + ЭлеГум Бор-Марганец (2,0 л/т)	45,8	54,7	50,3	4,2	
4. Фон + ЭлеГум Бор-Цинк (2,0 л/т)	43,1	53,8	48,5	2,4	
HCP ₀₅	1,9	2,1	2,0		
Некорневая подкормка					
1. NPK – фон	46,4	50,7	48,6	_	
2. Фон + ЭлеГум Бор-Медь (1,0 л/га)	50,6	55,1	52,9	4,3	
3. Фон + ЭлеГум Медь-Марганец (1,0 л/га)	51,6	57,2	54,4	5,8	
4. Фон + ЭлеГум Цинк-Марганец (1,0 л/га)	50,6	55,7	53,2	4,6	
5. Фон + ЭлеГум Медь-Цинк (1,0 л/га)	50,0	54,6	52,3	3,7	
HCP ₀₅	2,4	2,1	2,2		

Отмечается улучшение качества зерна при применении различных марок микроудобрений ЭлеГум в предпосевную обработку семян и некорневую подкормку ячменя (табл. 5). В зависимости от способа внесения, марок и доз получено увеличение содержания белка в среднем за два года на 0,4–1,5 %, сбора белка – на 0,4–1,1 ц/га.

Таблица 5 Влияние микроудобрений ЭлеГум на качество зерна ячменя

Barress		Белок, %			Сбор белка, ц/га			
Варианты	2010 г.	2011 г.	сред- нее	2010 г.	2011 г.	сред- нее		
Предпосев	зная обра	ботка сем	ИЯН					
1. NPK – фон	12,3	10,0	11,2	4,4	4,3	4,4		
2. Фон + ЭлеГум Медь-Марганец (4,0 л/т)	13,4	12,0	12,7	5,2	5,7	5,5		
3. Фон + ЭлеГум Бор-Марганец (2,0 л/т)	13,1	10,0	11,6	5,2	4,7	5,0		
4. Фон + ЭлеГум Бор-Цинк (2,0 л/т)	13,5	10,0	11,8	5,0	4,6	4,8		
Некорневая подкормка								
1. NPK – фон	9,9	10,0	10,0	4,0	4,3	4,2		
2. Фон + ЭлеГум Бор-Медь (1,0 л/га)	10,8	10,8	10,8	4,6	5,1	4,9		
3. Фон + ЭлеГум Медь-Марганец (1,0 л/га)	10,4	10,4	10,4	4,6	5,1	4,9		
4. Фон + ЭлеГум Цинк-Марганец (1,0 л/га)	10,0	11,2	10,6	4,4	5,4	4,9		
5. Фон + ЭлеГум Медь-Цинк (1,0 л/га)	10,0	10,8	10,4	4,3	5,1	4,7		

выводы

- 1. Применение различных марок новых двухкомпонентных микроудобрений ЭлеГум при возделывании озимой пшеницы и ячменя показало положительную эффективность в повышении урожайности и качества зерна.
- 2. На дерново-подзолистой легкосуглинистой почве применение различных марок микроудобрений ЭлеГум в предпосевную обработку семян озимой пшеницы обеспечило повышение урожайности зерна на 3,8–4,7 ц/га. Некорневые подкормки посевов озимой пшеницы новыми микроудобрениями в зависимости от марок и доз способствовали повышению урожайности зерна на 4,2–6,0 ц/га.
- 3. При возделывании ячменя на супесчаной почве предпосевная обработка семян микроудобрениями ЭлеГум обеспечила повышение урожайности зерна на 2,4–4,2 ц/га, некорневая подкормка на 3,7–5,8 ц/га. В зависимости от марки микроудобрений и способа внесения содержание белка увеличивалось на 0,4–1,5 %, сбор белка на 0,4–1,1 ц/га.

СПИСОК ЛИТЕРАТУРЫ

- 1. Справочник по зерновым культурам / М.П. Шкель [и др.]; под ред.: В.П. Самсонова, Н.Д. Мухина. 2-е изд., перераб. и доп. Минск: Ураджай, 1986. 304 с.
- 2. Ягодин, Б.А. Агрохимия: учебник / Б.А. Ягодин, П.М. Смирнов, А.В. Петербургский. М.: Агропромиздат, 1989. 639 с.

- 3. Анспок, П.И. Микроудобрения / П.И. Анспок. Л: Агропромиздат, 1990. 272 с.
- 4. Справочник агрохимика / В.В. Лапа [и др.]; под ред. В.В. Лапа. Минск: Белорус. наука, 2007. 390 с.
- 5. Рациональное применение удобрений: пособие / И.Р. Вильдфлуш [и др.]; под общ. ред. И.Р. Вильдфлуша. Горки: БГСХА, 2002. 324 с.
- 6. Система применения микроудобрений под сельскохозяйственные культуры: рекомендации / Ин-т почвоведения и агрохимии НАН Беларуси. Минск, 2006. 28 с.

EFFECTIVENESS OF MICROFERTILIZERS ELEGUM IN WINTER WHEAT AND BARLEY CULTIVATION ON SOD-PODZOLIC SOILS

M.V. Rak, V.V. Lapa, G.A. Sokolov, S.A. Titova, T.G. Nikolaeva, E.N. Pukalova

Summary

In field experiments on sod-podzolic soils with winter wheat and barley the effectiveness of various kinds and dozes of liquid two component complex microfertilizers EleGum has studied.

Поступила 29.04.13

УДК 631.416.9:631.445.2

ПРОСТРАНСТВЕННАЯ НЕОДНОРОДНОСТЬ МИКРОЭЛЕМЕНТНОГО СОСТАВА СКЛОНОВЫХ ПОЧВ ЛЕВОБЕРЕЖНОЙ ЛЕСОСТЕПИ УКРАИНЫ

Н.Н. Мирошниченко¹, А.В. Тертышная¹, А.В. Панасенко²

¹Национальный научный центр «Институт почвоведения и агрохимии им. А.Н.Соколовского», г. Харьков, Украина ²Харьковский национальный аграрный университет им. В.В. Докучаева, г. Харьков, Украина

ВВЕДЕНИЕ

По экспертным оценкам, в различных физико-географических регионах Украины до 30–60 % сельскохозяйственных угодий расположены на склонах [1]. Среди склоновых почв выделяют как несмытые почвы (ксероморфные) со слаборазвитым профилем, так и смытые (эродированные) с утра-ченным верхним, наиболее плодородным слоем. Из-за особенностей распределения воды, тепла, растительности склоновое почвообразование имеет ряд специфических характеристик, которые находят отражение в физико-химических, агрохимических